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Abstract
Advanced phase-field techniques have been applied to address various aspects of
polycrystalline solidification including different modes of crystal nucleation. The height of the
nucleation barrier has been determined by solving the appropriate Euler–Lagrange equations.
The examples shown include the comparison of various models of homogeneous crystal
nucleation with atomistic simulations for the single-component hard sphere fluid. Extending
previous work for pure systems (Gránásy et al 2007 Phys. Rev. Lett. 98 035703), heterogeneous
nucleation in unary and binary systems is described via introducing boundary conditions that
realize the desired contact angle. A quaternion representation of crystallographic orientation of
the individual particles (outlined in Pusztai et al 2005 Europhys. Lett. 71 131) has been applied
for modeling a broad variety of polycrystalline structures including crystal sheaves, spherulites
and those built of crystals with dendritic, cubic, rhombo-dodecahedral and truncated octahedral
growth morphologies. Finally, we present illustrative results for dendritic polycrystalline
solidification obtained using an atomistic phase-field model.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A substantial fraction of the technical materials used in ev-
eryday life are polycrystalline, i.e. are composed of crystal-
lites whose size, shape and composition distributions deter-
mine the macroscopic properties and failure characteristics of
these substances (Cahn 2001). The size of the constituent crys-
tallites may range from nanometers to centimeters in differ-
ent classes of materials. While polycrystalline materials have
been the subject of intensive research for some time, many as-
pects of polycrystalline solidification are still little understood.
The complexity of multi-grain crystallization is exemplified
by thin polymer layers, which show an enormous richness of
crystallization morphologies (Geil 1963). Polycrystalline mor-
phologies of particular interest are the ubiquitous multi-grain

3 Author to whom any correspondence should be addressed.

dendritic and spherulitic structures. The multi-grain dendritic
structures are composed of a large number of pine-tree-like
dendritic crystals (relatives of the ice flowers forming on win-
dow panes) and, besides a broad range of other materials, they
have been seen in crystallizing colloidal suspensions (Cheng
et al 2002). The term ‘spherulite’ is used in a broader sense for
densely branched, polycrystalline solidification patterns (Mag-
ill 2001). Besides polymers and biopolymers, they have been
seen in a broad variety of systems including alloys, mineral ag-
gregates and volcanic rocks, liquid crystals, oxides and metal-
lic glasses, even chocolate and biological systems. In partic-
ular, the world of minerals provides beautifully complex ex-
amples of such structures (Shelf and Hill 2003). The appear-
ance of semi-crystalline spherulites of amyloid fibrils is as-
sociated with the Alzheimer and Creutzfeldt–Jakob diseases,
type II. diabetes and a range of systemic and neurotic disorders
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(Jin et al 2003, Krebs et al 2005), kidney stones of polycrys-
talline spherulitic structure have been observed (Khan et al
1979, Lambert et al 1998), and the formation kinetics of ice
crystals influences the extent of damage biological tissues un-
dergo during freezing (Zacharaissen and Hammel 1988). Other
remarkably complex polycrystalline morphologies appear in
composite materials, such as the ‘shish-kebab’ structure in car-
bon nanotube containing polymers (Li et al 2006) and the
plate-like branched structures (e.g. graphite in cast iron and in
other systems (Napolitano et al 2004, Hyde et al 2004)). Crys-
tallization can be influenced by intrinsic and external fields
such as composition, temperature, pressure, flow and electro-
magnetic fields. For example, modulated fields have been used
to influence the dendritic crystallization morphology both in
experiment and modeling of flow (Bouissou et al 1990), laser
pulses (Qian and Cummins 1990, Murray et al 1995) and pres-
sure (Börzsönyi et al 1999, 2000, Koss et al 2005, Li et al
2007). Although in the present paper, we concentrate mainly
on techniques that are able to address polycrystalline solidifica-
tion in specific intrinsic (composition) and external fields (tem-
perature), we consider the possible inclusion of other fields
(e.g. flow).

First, we need, however, a suitable model of polycrys-
talline solidification that incorporates crystal nucleation and
growth on an equal footing. The fact that very similar polycrys-
talline morphologies are seen in substances of very different
molecular geometry raises the hope that a coarse-grained field
theoretic model that neglects the molecular details might be
able to capture some of the essential factors that govern crys-
talline pattern formation in such systems. It is expected that
nucleation, diffusional instabilities, crystal symmetries and the
presence of particulate impurities play an important role. A
particularly interesting mode of polycrystalline solidification,
identified recently, is growth front nucleation (GFN), where
growth takes place via continuous formation of new grains
at the solidification front, a growth mechanism typical for
spherulites and fractal-like polycrystals (Gránásy et al 2004a,
2004b, 2005). Accordingly, the model needs to address homo-
geneous and heterogeneous nucleation of growth centers and
growth front nucleation (homogeneous and heterogeneous) to-
gether with diffusional instabilities.

Advances in computational materials science offer various
methods to model polycrystalline solidification, which include
cellular automata (e.g. Zhu and Hong 2002, Beltram-Sanchez
and Stefanescu 2004, Zhu et al 2008), level set (e.g.
Tryggvason et al 2001, Tan and Zabaras 2006, Tan and Zabaras
2007) and other front tracking techniques (e.g. Schmidt 1996,
Steinbach et al 1999, Jacot and Rappaz 2002), and phase-field
approaches (see recent reviews: Boettinger et al 2002, Chen
2002, Hoyt et al 2003, Gránásy et al 2004a). Among them the
phase-field models appear to be perhaps the most popular ones
as they connect thermodynamic and kinetic properties with
microstructure via a transparent mathematical formalism. In
the phase-field theory, the local state of matter is characterized
by a non-conserved structural order parameter φ(r, t), called
the phase field, which monitors the transition between the solid
and liquid states. The time evolution of the structural order
parameter is usually coupled to that of other slowly evolving
conserved fields such as temperature or composition.

The phase-field model has already been used to determine
the height of the nucleation barrier for homogeneous and
heterogeneous nucleation (Gránásy et al 2002, 2003a, 2007).
In the case of homogeneous nucleation a quantitative study
has been performed for the hard sphere systems utilizing the
thermodynamic, interfacial free energy and interface thickness
data to fix the model parameters in equilibrium. Then the
Euler–Lagrange equations have been solved to obtain the
unstable equilibrium corresponding to crystal nuclei in the
supersaturated state. This procedure delivers the free energy
of nuclei without adjustable parameters, which can be then
compared to the nucleation barrier data measured directly by
atomistic simulations (Auer and Frenkel 2001a, 2001b). It has
been found that, with an orientation averaged interfacial free
energy of ∼0.61kT/σ 2, obtained from molecular dynamics
and Monte Carlo techniques (Davidchack and Laird 2000,
Cacciuto et al 2003), a fair agreement can be seen with a
phase-field model that relies on a quartic free energy and the
usual intuitive but thermodynamically consistent interpolation
function. Remarkably, recently, the free energy of the hard
sphere crystal–liquid interface has been reduced considerably
to ∼0.559kT/σ 2 (Davidchack et al 2006), which certainly
spoils the fair agreement (here k, T , and σ are Boltzmann’s
constant, the temperature and the diameter of the hard
spheres, respectively). It would then be natural to explore
whether a better approximation could be obtained by using
physically motivated double-well and interpolation functions
emerging from a Ginzburg–Landau expansion of the free
energy (Gránásy and Pusztai 2002).

In the case of heterogeneous nucleation appropriate
boundary conditions have been introduced at the foreign wall
to realize the required contact angle (Gránásy et al 2007).
Properties of the heterogeneous nuclei in two dimensions (2D)
were obtained by solving numerically the respective Euler–
Lagrange equation under these boundary conditions. This
work needs to be extended to 3D and to alloys.

Modeling of polycrystalline solidification requires the
inclusion of homogeneous and/or heterogeneous nucleation
in the phase-field model. In field theoretic models it is
done traditionally by adding Langevin noise of appropriate
properties to the equations of motion (see e.g., Gunton et al
1983). However, to describe the impingement of a large
number of crystallites that grow anisotropically, one needs
to incorporate the crystallographic orientations that allow the
specification of the preferred growth directions. The first
phase-field model that introduces different crystallographic
orientations into a solidifying system (Morin et al 1995) relies
on a free energy density that has n wells, corresponding to
n crystallographic orientations, thus breaking the rotational
symmetry of the free energy. Simulations have then been
performed to study polymorphous crystallization, where the
composition of the liquid remains close to that of the
crystal. Therefore, chemical diffusion plays a minor role and
the system follows the Johnson–Mehl–Avrami–Kolmogorov
(JMAK) kinetics (see, e.g., Christian 1981). A weakness of the
model is that the rotational invariance of the free energy density
had to be sacrificed and a finite number of crystallographic
orientations need to be introduced to enable the formation of
grain boundaries of finite thickness.
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A different approach for addressing the formation of
particles with random crystallographic orientations is realized
by the multi-phase-field theory (MPFT; see, e.g., Steinbach
et al 1996, Fan and Chen 1996, Tiaden et al 1998, Diepers
et al 2002, Krill and Chen 2002), in which a separate phase
field is introduced for every crystal grain. This model offers
flexibility at the expense of enhanced mathematical/numerical
complexity. MPFT has been used to study polycrystalline
dendritic and eutectic/peritectic solidification, and has also
been successfully applied for describing the time evolution
of multi-grain structures. However, the large number of
phase fields applied in these approaches leads to difficulties
when nucleation is to be modeled by Langevin noise. While
noise-induced nucleation can certainly be substituted by
inserting nuclei by ‘hand’ into the simulations, this procedure
becomes excessively non-trivial, when structures that require
the nucleation of different crystallographic orientations at
the growth front are to be addressed. Such a treatment,
furthermore, rules out any possible interaction between
diffusion and the orientation of new grains. In this way
realization of growth front nucleation in the MPFT is not
immediately straightforward.

It appears that modeling of complex polycrystalline struc-
tures, and especially of GFN, requires another approach that
relies on an orientation field to monitor the crystallographic
orientation. The first model of this kind has been put forward
by Kobayashi et al (1998) to model polycrystalline solidifica-
tion in 2D, which uses a non-conserved scalar field to monitor
crystallographic orientation. Assuming a free energy density
of fori = H T |∇θ |, where the coefficient H has a minimum
at the position of the interface, the minimization of free en-
ergy leads to a stepwise variation of θ(r), a behavior approxi-
mating reasonably the experimental reality of stable, flat grain
boundaries. (Such a minimum can be realized by making the
coefficient H dependent on the phase field, e.g. by introducing
the factor 1 − p(φ) into fori (Gránásy et al 2002)). Various
modifications of this approach have been successfully applied
for describing problems including solid–solid and solid–liquid
interfaces (Kobayashi et al 1998, 2000, Warren et al 2003).
A further important contribution was the modeling of the nu-
cleation of grains with different crystallographic orientations,
which has been solved by Gránásy et al (2002), who extended
the orientation field θ into the liquid phase, where it has been
made to fluctuate in time and space. Assigning local crystal ori-
entation to liquid regions, even a fluctuating one, may seem ar-
tificial at first sight. However, due to geometrical and/or chem-
ical constraints, a short-range order exists even in simple liq-
uids, which is often similar to the one in the solid. Rotating the
crystalline first-neighbor shell so that it aligns optimally with
the local liquid structure, one may assign a local orientation
to every atom in the liquid. The orientation obtained in this
manner indeed fluctuates in time and space. The correlation of
the atomic positions/angles shows how good this fit is. (In the
model, the fluctuating orientation field and the phase field play
these roles.) Approaching the solid from the liquid, the orienta-
tion becomes more definite (the amplitude of the orientational
fluctuations decreases) and matches that of the solid, while the
correlation between the local liquid structure and the crystal

structure improves. fori = [1− p(φ)]|∇θ | recovers this behav-
ior by realizing a strong coupling between the orientation and
phase fields. This addition to the orientation field model, first
introduced by Gránásy et al (2002), facilitates the quenching
of orientational defects in the crystal, leading to a mechanism
generating new grains at the growth front. Indeed this approach
of ours successfully describes the formation of such complex
polycrystalline growth patterns formed by GFN as disordered
(‘dizzy’) dendrites (Gránásy et al 2003b), spherulites (Gránásy
et al 2003c, 2004a, 2004b, 2005), ‘quadrites’ (Gránásy et al
2005), fractal-like aggregates (Gránásy et al 2004a) and eu-
tectic grains with preferred orientation between the two crys-
talline phases (Lewis et al 2004). The generalization of this
approach to three dimensions has been done somewhat later.
Practically at the same time two essentially equivalent formu-
lations have been put forward: Pusztai et al (2005a, 2005b)
used the quaternion representation for the crystallographic ori-
entation in solidification problems, while Kobayashi and War-
ren (2005a, 2005b) proposed a rotation matrix representation
to address grain boundary dynamics. A shortcoming of these
earlier works is that crystal symmetries have not been taken
into account in the simulations, although Pusztai et al (2005a,
2005b) outlined in their papers how crystal symmetries should
be handled in grain boundary formation.

A promising new field theoretic formulation of polycrys-
talline solidification is the Phase-Field Crystal (PFC) model
(Elder et al 2002, 2007, Elder and Grant 2004), which ad-
dresses freezing on the atomistic/molecular scale. The PFC
approach is a close relative of the classical density functional
theory (DFT) of crystallization: one may derive it by making
a specific approximation for the two-particle direct correlation
function of the liquid (Elder and Grant 2004, Elder et al 2007)
in the Ramakrishnan–Yussouff expansion of the free energy
functional of the crystal relative to the homogeneous liquid (for
a review of DFT see Oxtoby et al 1991). Remarkably, the PFC
description includes automatically the elastic effects and crys-
tal anisotropies, while addressing interfaces, dislocations and
other lattice defects on the atomic scale. It has the advantage
over traditional atomistic simulations (such as molecular dy-
namics) in that it works on the diffusive timescale, i.e. pro-
cesses taking place on about a million times longer timescale
than molecular dynamics can address. The PFC method has
already demonstrated its high potential for modeling dendrites,
eutectic structures, polycrystalline solidification, grain bound-
aries/dislocations, epitaxial growth, crack formation, etc (El-
der and Grant 2004, Elder et al 2007, Provatas et al 2007).
However, due to its atomistic nature it cannot be easily used to
model large scale polycrystalline structures. Combination of
a coarse-grained formulation of the binary PFC theory based
on the renormalization group technique outlined for the single-
component case with adaptive mesh techniques (Goldenfeld
et al 2005, Athreya et al 2006, 2007) will certainly enhance
the simulation domain for multi-component systems in the fu-
ture. Another difficulty is that the crystal lattice and the respec-
tive anisotropy of the interfacial free energy cannot be easily
tuned, although recent work incorporating three-body correla-
tion opens up the way for advances in this direction (Tupper
and Grant 2008). While the PFC is undoubtedly an excellent

3



J. Phys.: Condens. Matter 20 (2008) 404205 T Pusztai et al

tool for investigating the atomistic aspects of polycrystalline
solidification, it cannot easily address such scale morphologies
as 3D multi-grain dendritic structures or spherulites: they seem
to belong yet to the domain of conventional phase-field model-
ing. With appropriate numerical techniques, however, the PFC
model might be applicable to address even such problems un-
der specific conditions in 2D.

Herein, we apply the phase-field method to address
various aspects of nucleation and polycrystalline solidification.
(i) We reassess phase-field models of homogeneous crystal
nucleation in the hard-sphere system. (ii) We determine the
structure and the barrier height for heterogeneous nucleation in
a binary alloy. (iii) We apply the model of Pusztai et al (2005a,
2005b) for describing polycrystalline solidification while
considering crystal symmetries in handling the orientation
field (crystallites with orientations related to each other by
symmetry operations should not form grain boundaries) and
demonstrate that the model is able to describe complex
polycrystalline solidification morphologies based on dendritic,
cubic, rhombo-dodecahedral and truncated octahedral growth
forms, besides the transition between single-needle crystals
and polycrystalline spherulites. We combine the model with
boundary conditions that realize pre-defined contact angles,
which is then used to model the formation of shish-kebab
structures on nanofibers. We introduce then a spatially
homogeneous flow and a fixed temperature gradient to mimic
directional solidification, which is then used to model the
columnar to equiaxed transition in a binary alloy. (iv) Finally,
we model multi-grain dendritic solidification in the framework
of the binary PFC approach.

2. Phase-field models used

2.1. Phase-field approach to nucleation barrier in
homogeneous and heterogeneous nucleation

As in other continuum models the critical fluctuation or
nucleus represents an extremum of the appropriate free energy
functional, and therefore can be found by solving the respective
sets of Euler–Lagrange equations. In the following we
present phase-field models for two cases: (a) homogeneous
nucleation in the hard-sphere system that crystallizes to
the fcc (face-centered cubic) structure, where, besides the
structural changes, we explicitly incorporate the density
change during crystallization and (b) heterogeneous nucleation
in a binary system, where appropriate boundary conditions will
be introduced to fix the contact angle in equilibrium.

2.1.1. Phase-field model of homogeneous nucleation in the
hard-sphere system. Here we consider two possible phase-
field approaches. Following previous work (Gránásy et al
2003a), the grand potential of the inhomogeneous system
relative to the initial liquid is assumed to be a local functional
of the phase field m monitoring the liquid–solid transition
(m = 0 and 1 in the liquid and the solid, respectively) and the
volume fraction ϕ = (π/6)σ 3ρ (here ρ is the number density
of the hard spheres):

�	 =
∫

d3r

{
ε2T

2
(∇m)2 +�ω(m, ϕ)

}
, (1)

where ε is a coefficient that can be related to the interfacial
free energy and the interface thickness, T is the temperature,
while�ω(m, . . .) is the local grand free energy density relative
to the initial state (which includes the Lagrange multiplier
term, ensuring mass conservation; here the Lagrange multiplier
is related to the chemical potential of the initial liquid).
The gradient term leads to a diffuse crystal–liquid interface,
a feature observed both in experiment (e.g. Howe 1996,
Huisman et al 1997, Howe and Saka 2004, van der Veen and
Reichert 2004) and computer simulations (e.g. Broughton and
Gilmer 1986, Laird and Haymet 1992, Davidchack and Laird
1998, Ramalingam et al 2002). In the present work, grand
potential density is assumed to have the following simple form:

�ω(m, ϕ) = wT g(m)+ [1 − p(m)] fS(ϕ)+ p(m) fL(ϕ)

− {∂ fL/∂ϕ}(ϕ∞)[ϕ − ϕ∞] − fL(ϕ∞), (2)

where fS(ϕ) and fL(ϕ) are the Helmholtz free energy densities
for the solid and liquid states, while ϕ∞ is the volume fraction
of the initial (supersaturated) liquid phase. Different ‘double
well’ g(m) and ‘interpolation’ functions p(m) will be used
as specified below. The free energy scale w determines the
height of the free energy barrier between the bulk solid and
liquid states. Once the functional forms of g(m) and p(m) are
specified, model parameters ε and w can be expressed in terms
of γ∞ and the thickness δ of the equilibrium planar interface
(Cahn and Hilliard 1958).

Here we use two sets of these functions. One of them has
been proposed intuitively in an early formulation of the PFT
and in use widely:

(a) The ‘standard’ set (PFT/S). These functions are assumed
to have the form g(φ) = 1

4φ
2(1 − φ)2 and p(φ) =

φ3(10 − 15φ + 6φ2), respectively, that emerge from an
intuitive formulation of the PFT (Wang et al 1993). Here
φ = 1 − m is the complementing phase field, defined
so that it is 0 in the solid and 1 in the liquid. The
respective expressions for the model parameters are as
follows: ε2

S = 6×21/2γ∞δ/T f , andwS = 6×21/2γ∞/(δ ·
T f ). This model has been discussed in detail in Gránásy
et al (2003a).

(b) Ginzburg–Landau form for fcc structure (PFT/GL).
Recently, we have derived these functions for bcc (body-
centered cubic) and fcc (face-centered cubic) structures
(Gránásy and Pusztai 2002) on the basis of a single-
order-parameter Ginzburg–Landau (GL) expansion that
considers the crystal symmetries (Shih et al 1987). This
treatment yields g(m) = (1/6)(m2 − 2m4 + m6) and
p(m) = 3m4 − 2m6 for the fcc structure, while the
expressions that relate the model parameters to measurable
quantities are as follow: ε2

GL = (8/3)Cε2
S, w,GL =

wS(4C)−1, where C = ln(0.9/0.1) [3 ln(0.9/0.1) −
ln(1.9/1.1)]−1. Combination of the latter double well
and interpolation functions with equation (2) is a new
construction, presented here for the first time. Therefore,
though it is analogous to the procedure applied in a
previous work (Gránásy et al 2003a), we briefly outline
the way the properties of nuclei are determined in this
case.
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The field distributions, that extremize the free energy,
can be obtained solving the appropriate Euler–Lagrange
(EL) equations:

δ	

δm
= ∂ I

∂m
− ∇ ∂ I

∂∇m
= 0, (3a)

and
δ	

δϕ
= ∂ I

∂ϕ
− ∇ ∂ I

∂∇ϕ = 0, (3b)

where δ	/δm and δ	/δϕ stand for the first functional
derivative of the grand free energy with respect to the
fields m and ϕ, respectively. Here, I = 1

2ε
2T (∇m)2 +

f (m, ϕ) + λϕ is the total free energy density including
the term with a Lagrange multiplier λ ensuring mass
conservation, while the Helmholtz free energy density is
f (m, ϕ) = wT g(m) + [1 − p(m)] fS(ϕ) + p(m) fL(ϕ).
For the sake of simplicity, we assume here an isotropic
interfacial free energy (a reasonable approximation for
simple liquids). Note that, due to a lack of a gradient term
for the field ϕ in the grand potential, equation (3b) yields
an implicit relationship between m and ϕ, which can then
be inserted into equation (3a) when solving it.

Herein, equation (3a) has been solved numerically, using
a variable fourth-/fifth-order Runge–Kutta method (Korn and
Korn 1970), assuming an unperturbed liquid (m = 0, ϕ = ϕ∞)
in the far field (r → ∞) while, for symmetry reasons, a zero
field gradient applies at the center of the fluctuations. Since
m and dm/dr are fixed at different locations, the central value
of m that leads to m → m∞ = 0, for r → ∞, have been
determined iteratively. Having determined the solutions m(r)
and ϕ(r), the work of formation of the nucleus, W , has been
obtained by inserting these solutions into the grand potential
difference (equation (1)).

Of these two phase-field models (PFT/S and PFT/GL),
the latter, which relies on the Ginzburg–Landau expansion,
incorporates more detailed physical information on the system
(e.g. crystal structure), so therefore it is expected to provide a
better approximation to the atomistic simulations.

The physical properties we use here are the same as in a
previous work by us (Gránásy et al 2003a) with the exception
of the 10–90% interface thickness, which is now allowed to
change between 3.0σ and 3.3σ , values that are consistent with
the interfacial profiles for a variety of physical properties (such
as coarse-grained density, diffusion and orientational order
parameters q4 and q6) at the equilibrium solid–liquid interface
of the hard-sphere system (Davidchack and Laird 1998). In
section 3.1, we are going to address uncertainties associated
with the interface thickness and interfacial free energy taken
from atomistic simulations.

2.1.2. Phase-field model of heterogeneous nucleation in binary
alloys. Here, we have two fields to describe the local state
of the matter, the usual phase field φ(r) and the concentration
field c(r). In order to keep the problem mathematically simple,
we assume again an isotropic solid–liquid interface. Then
the Euler–Lagrange equation can be solved in a cylindrical
coordinate system. Furthermore, if we do not assume a

gradient term for the concentration field in the free energy, in
equilibrium, there exists an explicit relationship between the
phase field and the local concentration. Under these conditions,
we need to solve the following Euler–Lagrange equation for
the phase field:

1

2

∂

∂r

(
r
∂φ

∂r

)
+ ∂2φ

∂z2
= p′(φ)� f [φ, c] + g′(φ)wT

ε2T
, (4)

while in the absence of a |∇c|2 term in the free energy,
the Euler–Lagrange equation for the concentration field
yields a c(φ) relationship. Accordingly, in equation (4),
� f [φ, c(φ)] = f [φ, c(φ)] − (∂ f/∂c)(c∞)[c(φ) − c∞] −
f∞ is the driving force of crystallization, while properties
with subscript ∞ refer to quantities characterizing the initial
liquid state. Now we wish to ensure in equilibrium (stable
or unstable) that the solid–liquid interface has a fixed contact
angle ψ with a foreign wall placed at z = 0. To achieve
this, we prescribe the following boundary condition at the wall,
which can be viewed as a binary generalization of Model A
presented in Gránásy et al (2007):

(n · ∇φ) =
√

2� f [φ, c(φ)]
ε2T

cos(ψ), (5)

where n is the normal vector of the wall. The motivation
for this boundary condition is straightforward in the case of
a stable triple junction, in which the equilibrium planar solid–
liquid interface has a contact angle ψ with the wall. The wall
is assumed to lead to an ordering of the adjacent liquid, an
effect that extends into a liquid layer of thickness d , which is
only a few molecular diameters thick (see, e.g., Toxvaerd 2002,
Webb et al 2003). If we take the plane z = z0, which is slightly
above this layer, i.e., z0 > d , the structure of the equilibrium
solid–liquid interface remains unperturbed by the wall (see
figure 1). Then along the z = z0 plane the phase field and
concentration profiles are trivially related to the equilibrium
profiles across the solid–liquid interface. Evidently, in the
interface the following relationship holds:

ε2T

2

(
∂φ

∂nSL

)2

= � f [φ, c(φ)], (6)

where nSL is a spatial coordinate normal to the solid–
liquid interface, while the component of ∇φ normal to
the wall is then (n · ∇φ) = (∂φ/∂nSL) · cos(ψ) =
[2� f/(ε2T )]1/2 · cos(ψ). (Remarkably, if in equilibrium a
parabolic groove approximation by Folch and Plapp (2003,
2005) is applied for the free energy surface, one finds that
conveniently � f [φ, c(φ)] = wT g(φ).) While equation (5)
is straightforward for the equilibrium planar solid–liquid
interface, generalization of this approach for nuclei involves
further considerations. Indeed, in the undercooled state the
planar interface is not in equilibrium, � f [φ, c(φ)] is a tilted
double well and equation (6) is not valid anymore. Note
that it is the capillary pressure that restores the uniform
chemical potential inside the nucleus (being in unstable
equilibrium). While, in principle, it would be possible to
solve the appropriate spherical Euler–Lagrange equation for
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Figure 1. Typical cross-sectional phase-field map of a nucleus if the
structural effects of a wall placed at z = 0 are considered
(computation performed with Model B, which Warren proposed in
Gránásy et al (2007)). Note the boundary layers between the wall and
the solid phase (φ = 0), and between the wall and the liquid phase
(φ = 1). Note also that the crystal becomes disordered at the wall,
while an ordering of the liquid takes place near the wall. Above the
plane z = z0 the solid–liquid interface remains unperturbed by the
presence of the wall. In the case of a stable triple junction, however,
the solid–liquid interface will be planar (not curved as for nuclei).

the phase field and use the respective solution to determine
the normal component PN(φ) of the pressure tensor that
makes the chemical potential spatially uniform, it seems rather
impractical. It turns out, however, that at least for large
nuclei (small undercoolings) a fairly good approximation can
obtained if equation (5) is retained, however, with � f ′ =
� f − [1 − p(φ)] · � f0, where � f0 is the driving force of
solidification in the undercooled state. Note that the correction
term mimics the effect of capillary pressure.

2.2. Polycrystalline phase-field theory with quaternion
representation of crystallographic orientations

Here we use the three-dimensional PF model of polycrystalline
solidification (Pusztai et al 2005a, 2005b). Besides the usual
square-gradient and local free energy density terms, the free
energy functional consists of an orientational contribution:

F =
∫

d3r

{
ε2
φT

2
|∇φ|2 + f (φ, c, T )+ fori

}
. (7)

The local physical state of matter (solid or liquid) is
characterized by the phase field φ and the solute concentration
c, while εφ is a constant, and T is the temperature. The local
free energy density is assumed to have the form f (φ, c, T ) =
w(φ)T g(φ) + [1 − p(φ)] fS(c) + p(φ) fL(c), where the
intuitive ‘double well’ and ‘interpolation’ functions shown in
section 2.1.1 are used, while the free energy scale is w(φ) =
(1 − c)wA + cwB . The respective free energy surface has
two minima (φ = 0 and 1, corresponding to the crystalline
and liquid phases, respectively), whose relative depth is the
driving force for crystallization and is a function of both
temperature and composition, as specified by the free energy
densities in the bulk solid and liquid, fS,L(c, T ), taken here
for the binary systems from the ideal solution model, or from
CALPHAD type computations (computer-aided calculation of
phase diagrams).

The orientational contribution to free energy fori has been
obtained as follows. In 3D, the relative orientation with
respect to the laboratory system is uniquely defined by a

single rotation of angle η around a specific axis, and can
be expressed in terms of the three Euler angles. However,
this representation has disadvantages: it has divergences at
the poles ϑ = 0 and π , and one has to use trigonometric
functions that are time-consuming in numerical calculations.
Therefore, we opt for the four symmetric Euler parameters,
q0 = cos(η/2), q1 = c1 sin(η/2), q2 = c2 sin(η/2) and q3 =
c3 sin(η/2), a representation free of such difficulties. (Here ci

are the components of the unit vector c of the rotation axis.)
These four parameters q = (q0, q1, q2, q3), often referred to as
a quaternion, satisfy the relationship

∑
i q2

i = 1 and therefore
can be viewed as a point on the four-dimensional (4D) unit
sphere (Korn and Korn 1970). (Here

∑
i stands for summation

with respect to i = 0, 1, 2 and 3, a notation used throughout
this paper.)

The angular difference δ between two orientations
represented by quaternions q1 and q2 can be expressed as
cos(δ) = 1/2[Tr(R) − 1], where the matrix of rotation
R is related to the individual rotation matrices R(q1) and
R(q2) that rotate the reference system into the corresponding
local orientations, as R = R(q1) · R(q2)

−1. After lengthy
but straightforward algebraic manipulations one finds that the
angular difference can be expressed in terms of the differences
of quaternion coordinates: cos(δ) = 1 − 2�2 + �4/2,
where �2 = (q2 − q1)

2 = ∑
i �q2

i , is the square of
the Euclidean distance between the points q1 and q2 on
the 4D unit sphere. Comparing this expression with the
Taylor expansion of the function cos(δ), one finds that 2�
is indeed an excellent approximation of δ. Relying on this
approximation, we express the orientational difference as
δ ≈ 2�.

The free energy of small-angle grain boundaries increases
approximately linearly with the misorientation of the
neighboring crystals, saturating at about twice the free energy
of the solid–liquid interface. Our goal is to reproduce this
behavior of the small-angle grain boundaries. To penalize
spatial changes in the crystal orientation, in particular the
presence of grain boundaries, we introduce an orientational
contribution fori to the integrand in equation (1), which
is invariant to rotations of the whole system. While in
2D the choice of the orientational free energy in the form
fori = H T [1 − p(φ)]|∇θ | (where the grain boundary
energy scales with H ) ensures a narrow grain boundary and
describes successfully both polycrystalline solidification and
grain boundary dynamics (Kobayashi et al 1998, 2000, Warren
et al 2003, Gránásy et al 2002, 2004a, 2004b), in 3D we
postulate an analogous intuitive form:

fori = 2H T [1 − p(φ)]
{∑

i

(∇qi)
2

}1/2

. (8)

It is straightforward to prove that this form boils down to
the 2D model, provided that the orientational transition across
grain boundaries has a fixed rotation axis (perpendicular to the
2D plane) as assumed in the 2D formulation.

As in 2D, to model crystal nucleation in the liquid, we
extend the orientation fields, q(r), into the liquid, where
they are made to fluctuate in time and space. Note that fori
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(a) (b) (c)

Figure 2. Single-crystal growth forms at various choices of the anisotropy parameters of the kinetic coefficient: (a) cube
(ε1 = −1.5, ε2 = 0.3); (b) rhombo-dodecahedron (ε1 = 0.0, ε2 = 0.6); (c) truncated octahedron (ε1 = 0.0, ε2 = −0.3). Here ε1 and ε2 are
the coefficients of the first and second terms in the cubic harmonic expansion of the kinetic anisotropy.

consists of the factor [1 − p(φ)] to avoid double-counting
of the orientational contribution in the liquid, which is per
definitionem incorporated into the free energy of the bulk
liquid. With an appropriate choice of the model parameters, an
ordered liquid layer surrounds the crystal as seen in atomistic
simulations.

Time evolution of the field is assumed to follow relaxation
dynamics described by the equations of motion:

φ̇ = −Mφ

δF

δφ
+ ζφ = Mφ

{
∇

(
∂ I

∂∇φ
)

− ∂ I

∂φ

}
+ ζφ, (9a)

ċ = ∇Mc∇
(
δF

δc
− ζ j

)
= ∇

{
vm

RT
Dc(1 − c)∇

×
[(
∂ I

∂c

)
− ∇

(
∂ I

∂∇c

)
− ζ j

]}
, (9b)

∂qi

∂ t
= −Mq

δF

δqi
+ ζi = Mq

{
∇

(
∂ I

∂∇qi

)
− ∂ I

∂qi

}
+ ζi . (9c)

Here I is the integrand of the free energy functional (that
includes terms containing Lagrange multipliers, which enforce
constraits as discussed below), vm is the molar volume, D the
diffusion coefficient in the liquid and ζi are the appropriate
noise terms representing the thermal fluctuations (conserved
noise for the conserved fields and non-conserved noise for
the non-conserved fields (Karma and Rappel 1999)). The
timescales for the fields are determined by the mobility
coefficients appearing in the coarse-grained equations of
motion: Mφ , Mc and Mq . These coarse-grained mobilities
can be taken from experiments and/or evaluated from atomistic
simulations (see, e.g., Hoyt et al 2003). For example,
the mobility Mc , is directly proportional to the classic
inter-diffusion coefficient for a binary mixture, the phase-
field mobility Mφ dictates the rate of crystallization, while
the orientational mobility Mq controls the rate at which
regions reorient, a parameter that can be related to the
rotational diffusion coefficient and is assumed to be common
for all quaternion components. While the derivation of
a more detailed final form of equations (9a) and (9b) is
straightforward, in the derivation of the equations of motion
(equation (9c)) for the four orientational fields qi(r), we need
to take into account the quaternion properties (

∑
i q2

i =
1), which can be done by using the method of Lagrange

multipliers, yielding

∂qi

∂ t
= Mq

{
∇

(
H T [1 − p(φ)] ∇qi[∑

l (∇ql)
2
]1/2

)

− qi

∑
k

qk∇
(

H T [1 − p(φ)] ∇qk[∑
l (∇ql)

2
]1/2

)}
+ ζi .

(10)

Gaussian white noises of amplitude ζi = ζS,i + (ζL,i −
ζS,i)p(φ) are then added to the orientation fields so that the
quaternion properties of the qi fields are retained. (ζL,i and ζS,i

are the amplitudes in the liquid and solid, respectively.)
This formulation of the model is valid for triclinic lattice

without symmetries (space group P1). In the case of other
crystals, the crystal symmetries yield equivalent orientations
that do not form grain boundaries. In previous works, we
have proposed that the crystal symmetries can be taken into
account, when discretizing the differential operators used in the
equations of motions for the quaternion fields. Calculating the
angular difference between a central cell and its neighbors, all
equivalent orientations of the neighbor have to be considered,
the respective angular differences δ can be calculated (using
matrices of rotation R′ = R · S j · R−1, where S j is a
symmetry operator), of which the smallest δ value shall be used
in calculating the differential operator. (For cubic structure,
there are 24 different S j operators, if mirror symmetries whose
interpretation in continuum models is not straightforward are
omitted.)

Solving these equations numerically in three dimensions
with an anisotropic interfacial free energy:

γ (n)
γ0

= S(n) = 1 + ε1

(
3∑

i=1

n4
i − 3

5

)

+ ε2

(
3∑

i=1

n4
i + 66n2

1n2
2n2

3 − 17
7

)
, (11)

or with an anisotropic phase-field mobility of similar form
Mφ = Mφ,0 S(n), one may obtain various single-crystal growth
forms as exemplified in figure 2. Note that in equation (11)
n = (n1, n2, n3) in the normal vector of the solid–liquid
interface that can be expressed in terms of components of ∇φ.
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2.2.1. Boundary conditions. Unless stated otherwise, we
have used periodic boundary conditions in all directions. On
foreign surfaces, a binary generalization of the boundary
condition of Model A of Gránásy et al (2007) has been
applied (see also section 2.1.2). We model directional
solidification by imposing a temperature gradient (note the
excess term that appears because of the temperature-dependent
coefficient of |∇φ|2) and a uniform flow velocity in the
simulation window. Foreign particles of given size and contact
angle distributions of random lateral position and random
crystallographic orientation were let in on the side, where the
high temperature liquid enters the simulation window.

2.2.2. Material properties. The polycrystalline calculations
have been performed with three sets of material parameters.
(i) For an ideal solution, an approximant of the Ni–Cu system
we used in previous studies (for details see Pusztai et al 2005a).
(ii) For a parabolic groove, an approximation of the free energy
(developed by Folch and Plapp 2003, 2005) adapted to the Ni–
Cu system at 1574 K by Warren (2007). (iii) For the Al–
Ti alloy, thermodynamic properties from a CALPHAD-type
assessment of the phase diagram (for details see Pusztai et al
2006).

2.2.3. Numerical solutions. The equations of motion have
been solved numerically using an explicit finite difference
scheme. Periodic boundary conditions were applied. The
time and spatial steps were chosen to ensure stability of our
solutions. The noise has been discretized as described by
Karma and Rappel (1999). A parallel code relying on the
MPI/OpenMPI protocols has been developed.

2.3. Binary phase-field crystal model

In derivation of the binary PFC, the starting point is the free
energy functional of the binary perturbative density functional
theory, where the free energy is Taylor-expanded relative to
the liquid state (denoted by subscript L) up to second order in
density difference (up to two-particle correlations) (Elder et al
2007):

F

kT
=

∫
dr

[
ρA ln

(
ρA

ρL
A

)
−�ρA + ρB ln

(
ρB

ρL
B

)
−�ρB

]

− 1
2

∫ ∫
dr1 dr2

[
�ρA(r1)CAA(r1, r2)�ρA(r2)

+ �ρB(r1)CB B(r1, r2)�ρB(r2)+ 2�ρA(r1)

× CAB(r1, r2)�ρB(r2)
]
, (12)

where k is Boltzmann’s constant, �ρA = ρA − ρL
A and

�ρB = ρB − ρL
B . It is assumed here that all two-

point correlation functions are isotropic, i.e. Ci j(r1, r2) =
Ci j(|r1 − r2|). Taylor-expanding direct correlation functions
in Fourier space up to fourth order, one obtains Ci j = [C0

i j −
C2

i j∇2 +C4
i j∇4]δ(r1 − r2) in real space, where ∇ differentiates

with respect to r2 (see Elder et al 2007). The partial
direct correlation functions Ci j can be related to measured
or computed partial structure factors (see, e.g., Woodhead-
Galloway and Gaskell 1968).

Following Elder et al (2007), we introduce the reduced
partial number density differences n A = (ρA − ρL

A)/ρL and
n A = (ρB − ρL

B)/ρL, where ρL = ρL
A + ρL

B . It is also
convenient to introduce the new variables n = n A + nB and
(δN) = (nB − n A)+ (ρL

B − ρL
A)/ρL. Then, expanding the free

energy around (δN) = 0 and n = 0 one obtains

F

ρLkT
=

∫
dr

{
n

2

[
BL + BS(2R2∇2 + R4∇4)

]
n + t

3
n3

+ v

4
n4 + γ (δN) + w

2
(δN)2 + u

4
(δN)4

+ L2

2
|∇(δN)|2 + · · ·

}
. (13)

Assuming substitutional diffusion between species A and
B, i.e. the same M mobility applies for the two species,
the dynamics of n and (δN) fields decouple. Assuming,
furthermore, that the mobility is a constant Me, the respective
equations of motion have the form (Elder et al 2007)

∂n

∂ t
= Me∇2 δF

δn
and

∂(δN)

∂ t
= Me∇2 δF

δ(δN)
,

(14)
where δF

δχ
= ∂ I

∂χ
+ ∑

j (−1) j∇ j ∂ I
∂∇ jχ

is the first functional
derivative of the free energy with respect to field χ and I is
the integrand of equation (13), while the respective effective
mobility is Me = 2M/ρ2. Expanding BL, BS and R in terms
of (δN) with coefficients denoted as BL

j , BS
j and R j , assuming

that only coefficients BL
0 , BL

2 , BS
0 , R0 and R1 differ from zero,

and inserting the respective form of I into equation (14), one
finds
∂n

∂ t
= Me∇2

[
n

{
BL

0 + BL
2 (δN)2

} + tn2 + vn3

+ BS
0

2

{
2 [R0 + R1(δN)]2 ∇2 + [R0 + R1(δN)]4 ∇4

}
n

+ BS
0

2
{2∇2(n[R0 + R1(δN)]2)

+ ∇4(n[R0 + R1(δN)]4)}
]
, (15a)

∂(δN)

∂ t
= Me∇2

[
BL

2 (δN) n2 + 2BS
0 n

{
[R0 + R1(δN)] R1∇2

+ [R0 + R1(δN)]3 R1∇4
}
n + γ +w (δN)

+ u(δN)3 − L2∇2(δN)
]
. (15b)

These equations have been solved numerically using
a semi-implicit spectral method based on operator splitting
(Tegze et al 2008) under periodic boundary conditions on all
sides after adding a conservative noise (a random flux) to them
that represent the thermal fluctuations with an ultraviolet cutoff
at the inter-atomic spacing.

2.4. Computational resources

The parallel codes developed for the phase field and phase-
field crystal models have been run on three recently built PC
clusters: two at the Research Institute for Solid State Physics
and Optics, Budapest, Hungary, consisting of 160 and 192
CPU cores (80 dual core Athlon processors with 1 Gbit/s
(normal Ethernet) communication, and 24 × 2 × 4 CPU core

8
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Intel processors equipped with 10 Gbit/s fast communication
(Infiniband)), respectively, and a third PC cluster at the
Brunel Centre for Advanced Solidification Technology, Brunel
University, West London, UK, consisting of 160 CPU cores
(20 × 2 × 4 CPU core Intel processors) and 1 Gbit/s (normal
Ethernet) communication.

3. Results and discussion

3.1. Quantitative test of phase-field models of homogeneous
crystal nucleation in the hard-sphere system

The predicted nucleation barrier heights are presented for the
usual intuitive and Ginzburg–Landau expanded double well
and interpolation functions in figure 3 as a function of volume
fraction. It has been found that the barrier heights predicted
by the PFT with physically motivated free energy (PFT/GL)
gives a considerably closer agreement with direct results from
atomistic simulations (Auer and Frenkel 2001a, 2001b) than
the PFT model with a free energy surface relying on the
usual intuitively chosen double well and interpolation function
(PFT/S). It is also remarkable that the droplet model of the
classical nucleation theory fails spectacularly. We note here
that, in a previous study (Gránásy et al 2003a), we used an
interface thickness determined by the envelope of the density
peaks. We believe that the present choice of δ10%−90% ∈
[3.0σ, 3.3σ ], which has been deduced from profiles for several
physical properties should be more reliable. It is worth
noting also that the interfacial data from atomistic simulations
might somewhat underestimate both the interfacial free energy
and the interface thickness due to the limited size of such
simulations, which leads to a long wavelength cutoff in the
spectrum of surface fluctuations. On the other hand, interfaces
relevant to nucleation are of a size scale that is comparable to
the size scale of atomistic simulations, so one might expect
here only minor errors from this source.

3.2. Structure and barrier for heterogeneous crystal nuclei in
binary alloys

The structure of the heterogeneous nuclei forming at 1574 K in
an NiCu liquid alloy (with a free energy surface approximated
by a parabolic groove (Folch and Plapp 2003)) of composition
(c − cS)/(cL − cS) = 0.2 under nominal contact angles
ψ = 30◦, 60◦, 90◦, 120◦ and 170◦ at a horizontal wall
enforced by the boundary condition equation (5) are shown
in figure 4. Note that the interface thickness is considerably
smaller than the radius of curvature. Accordingly, in the non-
wetting limit (ψ → π ), the height of the nucleation barrier
can be approximated well with that from the classical droplet
model of homogeneous nuclei. However, towards ideal wetting
the nuclei are made almost entirely of interface, so the classical
spherical cap model is expected to break down. Despite this, an
analysis of the contour lines corresponding to φ = 1/2 gives
contact angles within about 2◦ of the nominal (scattering with
roughly this value). It is thus demonstrated that so far as the
height of the nucleus is larger than the interface thickness the
true contact angle falls reasonably close to the nominal value,
i.e. the boundary condition given by equation (5) can be used

Figure 3. Comparison of the reduced nucleation barrier height
(W ∗/kT ) versus volume fraction relationships that various
phase-field models predict for the hard-sphere system without
adjustable parameters. Predictions of PFT models with the intuitive
(PFT/S) and Ginzburg–Landau expanded (PFT/GL) double well and
interpolation functions are presented. There are two curves for each
PFT model: one with the minimum (upper curve) and another with
the maximum of the 10–90% interface thickness deduced from
atomistic simulations (Davidchack and Laird 1998). For comparison,
direct results for W ∗ from the Monte Carlo simulations (full squares;
Auer and Frenkel 2001a, 2001b) and parameter-free predictions from
the droplet model of the classical nucleation theory (CNT) are
also shown.

with confidence to simulate surfaces of pre-defined contact
angle of ψ .

It is also of interest to compare the nucleation barriers
from the phase-field theory and from the classical spherical cap
model relying on a sharp interface (the homogeneous nucleus
can also be obtained by doubling the barrier height for 90◦
contact angle). It appears that under the investigated conditions
the catalytic potency factor f (ψ) = Whetero/Whomo follows
closely the function f (ψ) = (1/4)[2 − 3 cos(ψ) + cos(ψ)3]
from the classical spherical cap model (see the rightmost
panel in figure 4). This is reasonable, since these nuclei,
as mentioned above, are fairly classical since their radius of
curvature is large compared to the interface thickness.

Next, we apply this technique in phase-field simulations
of heterogeneous nucleation. First, we apply it for
the solidification of a single-component system (only
equation (9a) is solved here). Noise-induced heterogeneous
nucleation has been simulated on complex surfaces ofψ = 60◦
including stairs, a checkerboard modulated surface, rectangular
grooves and randomly positioned spheres with random radius,
while using the properties of pure Ni (figure 5). Also we
incorporate results for a non-wetting brush (ψ = 175◦)
protruding from a wetting surface (ψ = 60◦), while at the
center of the simulated area a wetting stage (ψ = 60◦) is
placed that helps crystal nucleation (figure 6). A complex
behavior is seen: if the brush is dense, no nucleation is
possible on the horizontal surfaces only at the central stage,
and after nucleation the crystal ‘crawls’ on the tips of the
non-wetting brush. If the distance between the fibers in the
non-wetting brush increases the crystal can climb down to the
horizontal wetting surface, while if this distance between the
non-wetting fibers is large enough, nucleation may take place
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Figure 4. Phase-field (upper row) and composition (lower row) maps for heterogeneous nuclei obtained by solving numerically the respective
Euler–Lagrange equation (equation (4)) as a function of contact angle ψ in the binary NiCu system at 1574 K. The size of the calculation
window is 100 nm × 150 nm. The contour lines in the upper row indicate phase-field levels of φ = 0.1, 0.3, 0.5, 0.7 and 0.9, while the black
contour line in the composition maps indicates the equilibrium composition of the solid phase ce

S = 0.399 112. Here parabolic well
parameters corresponding to an interface thickness of 1.76 nm and a solid–liquid interfacial free energy of 0.3623 J m−2 have been used. The
classical (solid) and non-classical (full circles) catalytic potency factors are shown on the right.

Figure 5. Noise-induced heterogeneous crystal nucleation on complex surfaces of contact angle of 60◦. From left to right: stairs, rectangular
grooves, checkerboard modulated surface and spherical particles. (Properties of Ni have been used.)

Figure 6. Crystal nucleation and growth on a non-wetting nanofiber brush. Note the effect of decreasing density of the brush (from left
to right) on crystallization. (For details see the text.)

on the horizontal surface. Simulations of this kind might find
application in nanopatterning studies.

3.3. Modeling complex polycrystalline morphologies in
three dimensions

3D phase-field simulations showing the nucleation and growth
of crystallites of different habits (cube, rhombo-dodecahedron,
truncated octahedron and dendritic) realized by prescribing
appropriate kinetic anisotropies illustrate the application of
the quaternion field for describing crystallographic orientation
in figures 7 and 8. The physical properties of the Cu–Ni

system has been used, the calculations were performed at
1574 K and at a supersaturation of S = (cL − c)/(cL −
cS) = 0.75, where cL = 0.466 219, cS = 0.399 112
and c are the concentrations at the liquidus, solidus and
the initial homogeneous liquid mixture, respectively. The
diffusion coefficient in the liquid was assumed to be DL =
10−9 m2 s−1. Dimensionless mobilities of Mφ,0 = 3.55 ×
10−1 m3 J−1 s−1 (with an anisotropy of Mφ = Mφ,0{1 −
3ε0 + 4ε0[(A1∇φ)4x + (Ay∇φ)4y + (Az∇φ)4z ]/|A∇φ|4}), and
Mq,L = 8.17 m3 J−1 s−1 and Mq,S = 0 were applied, while
DS = 0 was taken in the solid. The kinetics of multi-
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Figure 7. Polycrystalline structures formed by nucleation and growth of cubic, rhombo-dodecahedral and truncated octahedral crystals (from
left to right, respectively). The computations have been performed on a 400 × 400 × 400 grid for ideal solution NiCu thermodynamics at
1574 K and supersaturation S = 0.8, with kinetic anisotropies given in the caption of figure 2.

Figure 8. Polycrystalline structure formed by nucleation and
dendritic growth in a NiCu alloy (whose thermodynamic properties
were approximated by the ideal solution model) at 1574 K and
S = 0.78, while assuming cubic crystal symmetries. Equation (9)
has been solved numerically on a 640 × 640 × 640 grid (∼262
million grid points) by solving numerically the equations of motion
(six stochastic partial differential equations). The computation took
about a month on 80 processors. By the end of the simulation, about
180 crystalline particles formed. Different colors indicate different
crystallographic orientations.

grain dendritic solidification has been simulated in a cube of
8.4 μm × 8.4 μm × 8.4 μm for a time interval of ∼0.16 ms.
The evolution of the normalized crystalline fraction X has been
analyzed in terms of the Johnson–Mehl–Avrami–Kolmogorov
kinetics (Christian 1981), X = 1 − exp{−(t/τ)pAK}, where τ
is a constant related to the nucleation and growth rates, and
pAK is the Avrami–Kolmogorov exponent characteristic to the
mechanism of transformation. The kinetic exponent evaluated
from our simulations, pAK = 2.922 ± 0.001(τ = 5 × 10−5 s),
falls between those for nucleation with diffusion-controlled
(pAK = 2.5) and with steady state growth (pAK = 4)
(see Christian 1981). This implies that some of the particles
have not yet reached the fully grown steady state dendritic
morphology, as is apparent in figure 8. Larger simulations are
planned to clarify further the relationship between morphology
and pAK. Note that here we have reasonable statistics for
nucleation, as by the end of the simulation, about 180 dendritic
particles formed, a number considered sufficient for such
purposes (Pusztai and Gránásy 1998).

As discussed in detail in previous work (Gránásy et al
2003c, 2004a, 2004b, 2005), reduction of the orientation

mobility in the case of needle crystals may lead to the
formation of Category 2 spherulites, that start to grow as a
single-needle crystal but later the ends splay out and form
eventually a space-filling roughly spherical polycrystalline
structure. A similar transition can be seen when increasing the
driving force of solidification. As demonstrated in figure 9, the
frequency by which new grains form at the ends of the needle
crystal increases strongly with increasing supersaturation. The
mechanism, by which the new grains form, is via quenching
orientational defects into the solid, from which defects might
be identified as bunches of dislocations, as in 2D simulations
(Gránásy et al 2006).

3.3.1. Modeling of directional solidification. In order
to model columnar to equiaxed transition (CET) in the
framework of the EU FP6 IMPRESS project (Jarvis and
Voss 2005), we have extended our 3D model to describe
polycrystalline solidification of the Al0.44Ti0.55 alloy in a
temperature gradient and a moving frame. To enable large
scale simulations, we have used a broad interface (65.6 nm),
however including an anti-trapping current (Kim et al 1999,
Karma 2001, Kim 2007) to ensure a quantitative description
of dendrites. In the simulation window, the material is made
to move with a homogeneous velocity from the bottom to
the top, while a fixed temperature gradient is prescribed in
the vertical direction. Particles of given number density,
random orientation and size, and of given contact angle, are
allowed to enter into the simulation window at the bottom
edge. Snapshots of the chemical and orientation maps
illustrating polycrystalline solidification under such conditions
are presented in figure 10. As a result of the interplay
between heterogeneous nucleation and growth, after the initial
transient, we observe stochastically alternating nucleation-
controlled and growth-controlled periods. This is a non-steady
solution appearing in the CET zone. A detailed analysis of this
phenomenon will be presented elsewhere (Pusztai et al 2008).

3.3.2. Phase separation and polycrystalline solidification
in the presence of fluid flow. In order to address the
solidification of Al–Bi monotectic alloys (candidates for
a new generation of self-lubricating bearing materials),
the 2D version of our polycrystalline phase-field theory
has been combined with viscous flow. Solidification has
been then modeled via introducing a phase-field-dependent
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Figure 9. From needle crystal to spherulites in a phase-field theory relying on a quaternion representation of the crystallographic orientation.
The simulations have been performed by solving equation (9) on a 200 × 200 × 400 grid assuming ideal solution thermodynamics. A large
kinetic anisotropy favoring a needle-crystal form, characterized by the parameter values ε0 = 1/3 and A = (0, 0, 1) has been applied. The
driving force of solidification increases from left to right (S = 1.8, 1.9, 2.0 and 2.1, respectively).
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Figure 10. Phase-field simulation of polycrystalline solidification of the Al0.45Ti0.55 alloy in a moving frame (V = 1.26 cm s−1) and a
constant temperature gradient (∇T = 1.12 × 107 K m−1). Composition (on the left) and orientation maps (on the right) corresponding to
times t = 2.3, 2.6 and 2.9 ms are shown. Note that the orientations corresponding to 0 and 1 are equivalent. The computation has been
performed by solving the 3D model (equation (9)) in 2D on a 600 × 3000 grid (3.93 μm × 19.69 μm). White spots in the chemical maps
indicate the foreign particles, whose diameter varies in the 13–66 nm range, and have a contact angle of ψ = 60◦.

viscosity and a non-classical stress tensor related to the
phase, composition and orientation fields (Tegze and Gránásy
2006), while the regular solution model has been used to
approximate the thermodynamics of the Al–Bi system. Inside
the liquid–liquid immiscibility region we observed various
hydrodynamic effects (Tegze et al 2005). Besides the
solutal and thermocapillary motion, we have seen flow-assisted
coagulation and bicontinuous phase separation (figure 11),
mechanisms identified by Tanaka and coworkers (Tanaka 1995,
1996, Tanaka and Araki 1998). It has also been found

that the solute pile-up ahead of the solidification front might
significantly accelerate droplet nucleation in the metastable
region of the liquid–liquid coexistence region (figure 11).

3.4. Atomistic simulations for polycrystalline solidification of
a binary alloy in two dimensions

We have performed simulations for the PFC model on a
16 384 × 16 384 grid using the same model parameters as
of Elder et al (2007); however, with half of their spatial
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(a)  (b)  (c)  (d) 

Figure 11. Liquid phase separation and solidification in monotectic alloys (regular solution approximant of Al–Bi). (a) Collision-assisted
collision of liquid droplets (cBi = 0.25, T = 920 K, 250 × 250 section of a 512 × 512 grid); (b) bicontinuous phase separation (cBi = 0.5,
T = 900 K, 512 × 512 grid); (c), (d) solidification of phase separating liquid (cBi = 0.23, T = 750 K, 512 × 512 section of a 1024 × 1024
grid). Compositions (a)–(c) and orientation maps (d) are shown. In panels (a)–(c) arrows indicate the velocity field.

Figure 12. Polycrystalline solidification in the binary phase-field crystal model (the distribution of the (δN) field is shown). First row:
dendritic growth of five crystalline particles (snapshots taken at 1000, 5000, 10 000 and 20 000 time steps are shown). Second row: growth of
50 particles (snapshots taken at 1000, 3000, 5000 and 10 000 time steps are shown). Thirrd row: growth of 500 particles (snapshots taken at
250, 500, 750 and 1500 time steps are shown). The simulations have been performed on a 16 384 × 16 384 grid, using a semi-implicit spectral
method. Note that here the position of all atoms of the crystalline phase are known accurately.

step. Accordingly, our simulation window contains roughly
1.6 million atoms. Solidification has been initiated by
inserting 5, 50 and 500 randomly oriented and positioned
crystalline clusters of 13 atoms each into the simulation
window. The resulting multi-grain structures are shown in
figure 12 (snapshots of the ‘composition field’ (δN) are
displayed). The respective time dependences of the number
of atoms in the crystalline phase are presented in figure 13(a).

The latter quantity has been obtained by counting the atoms
in the crystalline state (an atom has been supposed to belong
to the solid phase if its density peak was larger than the
average of the value for the bulk liquid and the maximum
value for the bulk crystal) using the public domain software
ImageJ (Abramoff et al 2004). The higher level of crystalline
fraction observed in the 500-particle simulation (∼1.5 million
atoms of a total of ∼1.6 million) signals a more efficient

13
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Figure 13. Crystallization kinetics for binary phase-field crystal simulations shown in figure 12. (a) Number of atoms in the crystalline phase
versus number of time steps; (b) Avrami plots (X and Xmax are the transformed fraction and its maximum; the slope of the curve is the
Avrami–Kolmogorov exponent pAK); and (c) the kinetic (Avrami–Kolmogorov) exponent as a function of the reduced transformed fraction.
(Upward and downward pointing triangles and squares correspond to 500, 50 and 5 particles, respectively.)

solute trapping, probably attributable to the fact that here
the initial transient of fast growth rate represents a larger
fraction of the total solidification time than for 50 or 5
particles. This is also consistent with the observation that
the contrast of the (δN) field grows with time. The time
evolution of crystallization has been analyzed in terms of
the JMAK kinetics. The respective Avrami plots and the
kinetic exponent versus reduced transformed fraction curves
are displayed in figures 13(b) and (c). The Avrami plots are
not linear, and the respective Avrami–Kolmogorov exponents
(pAK) vary with the transformed fraction (or time). Apart
from an initial transient, the observed pAK values fall between
the limiting values pAK = d/2 = 1 and pAK = d = 2,
corresponding to diffusion-controlled (conserved dynamics)
and interface-controlled growth of a fixed number of particles
in 2D (Christian 1981). A possible origin of the observed
time dependences of pAK is that, due to mass conservation
and the differences in the densities of the crystal and liquid,
the driving force for crystallization decreases as crystallization
proceeds. Screening effects characteristic of highly anisotropic
growth (Shepilov 1990, Shepilov and Baik 1994, Birnie and
Weinberg 1995, Pusztai and Gránásy 1998) are also expected
to influence transformation kinetics of the dendritic particles.
Finally, we note that the behavior of the pAK(X) curve for
the five dendritic particles reflects the small number of these
particles, which cannot provide a satisfactory statistics for an
accurate evaluation of the kinetic exponent. Unfortunately,
significantly larger simulations for a large number of fully
developed dendrites cannot be easily made with the present
numerical technique and the hardware we used.

4. Summary

Using various phase-field techniques, we have addressed
diverse aspects of polycrystalline solidification, including
homogeneous and heterogeneous nucleation of growth centers,
and polycrystalline growth. Along these lines, we have
shown that, using a physically motivated (Ginzburg–Landau
expanded) free energy in the phase-field approach, a
reasonably accurate prediction can be obtained for the
nucleation barrier of homogeneous crystal nucleation in
the hard-sphere system. We have then presented a
method for incorporating walls of pre-defined contact angle

into phase-field simulations, and demonstrated that rather
complicated problems (heterogeneous nucleation on patterned
surfaces/nanofiber brush) can be treated this way. Next, we
have shown that phase-field models based on a quaternion
representation of the crystallographic orientation are able to
address the formation of fairly complex three-dimensional
polycrystalline structures, including multi-grain dendritic
solidification and the formation of polycrystalline spherulites.
The effect of temperature and flow fields on polycrystalline
solidification has also been explored. Finally, we have used a
recently developed atomistic approach, the ‘phase-field crystal’
model, to investigate multi-grain dendritic crystallization in
a binary liquid alloy. We believe that these modeling tools
and their descendants/combinations supported by atomistic
simulations and ab initio computations will find application in
various branches of materials science and technology.
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Börzsönyi T, Tóth-Katona T, Buka Á and Gránásy L 1999 Phys. Rev.
Lett. 83 1853

Börzsönyi T, Tóth-Katona T, Buka Á and Gránásy L 2000 Phys. Rev.
E 62 7817

Bouissou Ph, Chiffaudel A, Perrin B and Tabeling P 1990 Europhys.
Lett. 13 89

Broughton J Q and Gilmer G H 1986 J. Chem. Phys. 84 5749
Cacciuto A, Auer S and Frenkel D 2003 J. Chem. Phys. 119 7467
Cahn J W and Hilliard J E 1958 J. Chem. Phys. 28 258
Cahn R V 2001 The Coming of Materials Science

(Oxford: Pergamon)
Chen L Q 2002 Annu. Rev. Mater. Res. 32 113
Cheng Z, Chaikin P M, Zhu J, Russel W B and Meyer W V 2002

Phys. Rev. Lett. 88 015501
Christian J W 1981 Transformations in Metals and Alloys

(Oxford: Pergamon)
Davidchack R L and Laird B B 1998 J. Chem. Phys. 108 9452
Davidchack R L and Laird B B 2000 Phys. Rev. Lett. 85 4751
Davidchack R L, Morris J R and Laird B B 2006 J. Chem. Phys.

125 094710
Diepers H J, Ma D and Steinbach I 2002 J. Cryst. Growth

237–239 149
Elder K R and Grant M 2004 Phys. Rev. E 70 051605
Elder K R, Katakowski M, Haataja M and Grant M 2002 Phys. Rev.

Lett. 88 245701
Elder K R, Provatas N, Berry J, Stefanovic P and Grant M 2007

Phys. Rev. B 75 064107
Fan D and Chen L Q 1996 Acta Mater. 45 611
Folch R and Plapp M 2003 Phys. Rev. E 68 010602
Folch R and Plapp M 2005 Phys. Rev. E 72 011602
Geil P H 1963 Polymer Single Crystals (New York: Wiley)
Goldenfeld N, Athreya B P and Dantzig J A 2005 Phys. Rev. E

72 020601
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