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The hard-sphere system is the best known fluid that crystallizes: the solid-liquid interfacial free energy, the
equations of state, and the height of the nucleation barrier are known accurately, offering a unique possibility
for a quantitative validation of nucleation theories. A recent significant downward revision of the interfacial
free energy from ∼0.61kT/σ2 to (0.56 ( 0.02)kT/σ2 [Davidchack, R.; Morris, J. R.; Laird, B. B. J. Chem.
Phys. 2006, 125, 094710] necessitates a re-evaluation of theoretical approaches to crystal nucleation. This
has been carried out for the droplet model of the classical nucleation theory (CNT), the self-consistent classical
theory (SCCT), a phenomenological diffuse interface theory (DIT), and single- and two-field variants of the
phase field theory that rely on either the usual double-well and interpolation functions (PFT/S1 and PFT/S2,
respectively) or on a Ginzburg-Landau expanded free energy that reflects the crystal symmetries (PFT/GL1
and PFT/GL2). We find that the PFT/GL1, PFT/GL2, and DIT models predict fairly accurately the height of
the nucleation barrier known from Monte Carlo simulations in the volume fraction range of 0.52 < φ < 0.54,
whereas the CNT, SCCT, PFT/S1, and PFT/S2 models underestimate it significantly.

1. Introduction

Nucleation of crystals in undercooled liquids is a fluctuation
phenomenon, in which crystal-like embryos form that exceed
the critical size determined by the interplay of the volumetric
and interfacial contributions to the free energy of cluster
formation.1 Here, the free energy of the crystal-liquid interface
plays a central role. However, with the exception of a few
transparent systems, the experimental data are far too inaccurate
to perform a conclusive test. Other uncertainties, that might limit
the experimental test of nucleation theory, are the possible
presence of heterogeneities and the difficulties associated with
separating the nucleation prefactor from the free energy of
critical clusters.1,2

To date, the most reliable and most direct information on
crystal nucleation is obtained from model systems. The best
known simple model system that shows crystallization is the
hard-sphere (HS) fluid. Extensive studies performed using the
molecular dynamics (MD) and Monte Carlo (MC) techniques
have clarified the main physical properties of the system:3-10

According to these, the fluid phase crystallizes to the fcc
structure beyond the volume fraction φL ) 0.492,4 while the
crystalline and liquid phases coexist in the volume fraction range
of 0.492 < φ < 0.543 ) φS, at the coexistence pressure of p )
(11.57 ( 0.03)kT/σ3.4 The equation of state (EOS) is known
from atomistic simulations for a broad range of volume fractions
for both the liquid3,5 and the crystalline phases,3,5 allowing one
to evaluate the relative free energies of the phases, that is, the
driving force of phase transition. (Critical comparison of
different forms of the EOS can be found in ref 7.) One of us

has recently performed a critical assessment of the EOS for the
solid and liquid phases in the range of volume fractions that
are of interest from the viewpoint of freezing.8 It has been found
that in the volume fraction range of crystallization the expres-
sions by Hall for the fcc and a polynomial form by Tóth give
the best fit to the simulation results. In contrast to the fcc phase,
the bcc is known to be mechanically unstable. Specific simula-
tion methods have been used to obtain its coexistence conditions
with the liquid and its EOS.9 Molecular dynamics simulations
have also been applied to determine the free energy of the
fcc-liquid interface.10 The early results from various methods
cluster around γ∞ ) 0.6kT/σ2: The first evaluation of the
interfacial free energy by the cleaving method yielded γ∞,100 )
(0.62 ( 0.01)kT/σ2, γ∞,110 ) (0.64 ( 0.01)kT/σ2, and γ∞,111 )
(0.58 ( 0.01)kT/σ2, yielding an orientation average of ∼0.61kT/
σ2.10a Comparable values have been obtained by the capillary
wave technique: γ∞,100 ) (0.64 ( 0.02)kT/σ2; γ∞,110 ) (0.62 (
0.02)kT/σ2; and γ∞,111 ) (0.61 ( 0.01)kT/σ2.10b The interfacial
free energy of small clusters has been evaluated from Monte
Carlo simulations using the umbrella sampling technique
yielding (0.616 ( 0.003)kT/σ2 for the orientation average at the
large particle limit.10c The free energy of small clusters has been
evaluated for mono-10c,11a and polydisperse11b hard spheres by
the same technique. It has been shown that the droplet model
of the classical nucleation theory (CNT) significantly underes-
timates the free energy of formation of small clusters.11a

These data from atomistic simulations have been used recently
for validating various cluster models including the classical
droplet model12 and phase field models with intuitively chosen13

and with Ginzburg-Landau (GL) expanded free energy.12 While
apparently the droplet model fails for the cluster sizes in the
range of simulations, other approaches including the phase field
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theory appear to be more promising.12,13 Somewhat surprisingly,
the GL approach, which incorporates the most detailed physical
information on the system, overestimated the nucleation barrier
quite substantially.12 Recently, however, the orientational aver-
age of the interfacial free energy has been corrected downward,
significantly: γ0 ) 0.574kT/σ2 has been obtained by the cleaving
method as a limit of the values obtained for inverse power
potentials.10c A recent work that addresses this question in depth,
compares results from the cleaving and capillary wave methods,
and revises the interfacial free energy further downward suggests
that the appropriate value is γ0 ) (0.56 ( 0.02)kT/σ2.14 This
∼10% reduction might invalidate previous conclusions drawn
from the earlier value of the interfacial free energy, and
necessitates a critical re-evaluation of the nucleation theories.

In this work, we have carried out a direct quantitative test
for the following theoretical approaches: (i) the classical droplet
model (CNT),15 (ii) the self-consistent classical theory (SCCT),16

(iii) a phenomenological diffuse interface theory (DIT),12,17 and
a single and two-field variants of the phase field theory that
rely either on the usual double-well and interpolation functions
[(iv) PFT/S118 and (v) PFT/S2,13 respectively] or on a
Ginzburg-Landau expanded free energy that reflects the crystal
symmetries [(vi) PFT/GL112,18 and (vii) PFT/GL2]. This com-
prises the most extensive comparative study of nucleation
theories for the hard-sphere system.

2. Applied Models

The models applied in the present analysis represent three
different levels of abstraction:

(i) The droplet model of the classical nucleation theory
(CNT): This model extends the concept of macroscopic droplets
into the microscopic regime without correction, and relies on a
macroscopic interfacial free energy, while assuming bulk crystal
properties in the volume of the droplet. This approach is widely
used in interpreting the experiments, though it is known to be
of very limited accuracy at the small size of nuclei relevant for
typical time scales.11

(ii) Phenomenological cluster models: Two significantly
different approaches are considered here. The self-consistent
classical theory tries to remove the evident inconsistency of the
CNT that it distinguishes the monomer of the new phase and
the monomer of the parent phase, which should be, in principle,
the same physical object. (It is easy to see, e.g., for vapor
condensation, a single molecule “droplet” floating in the vapor
phase and a single molecule of the vapor phase should indeed
be indistinguishable.) The correction is, however, done in an
ad hoc way, via subtracting the monomer free energy from the
free energy of all cluster sizes. Still in the case of homogeneous
vapor condensation, improved agreement between theory and
experiment could be observed. In contrast, the phenomenological
diffuse interface theory (DIT) tries to improve the droplet model
via taking into account the fact that according to atomistic
simulations the solid-liquid and vapor-liquid interfaces extend
to several molecular layers. Assuming yet bulk crystal properties
at the center of the nuclei, this approach predicts a curvature
dependent interfacial free energy and usually improves signifi-
cantly the agreement between theory and experiment for both
vapor condensation and crystal nucleation.

(iii) Field theoretical models: These models are descendants
of the van der Waals/Cahn-Hilliard/Landau type classical field
theoretical models, in which the spatial change of the order
parameter is penalized by a square-gradient term and has a
double-well free energy density, whose minima represent the
newly forming and the parent phase. Accordingly, they predict

a diffuse interface and are inherently capable of describing both
small clusters composed entirely of interface and the curvature
dependence of the interfacial free energy. Their accuracy,
however, should depend critically on the accuracy of the double-
well free energy used in the model. In this work, we are going
to investigate several possible formulations.

Next, we briefly review the free energy these models predict
for the critical fluctuations (nuclei). Since some of these
expressions have a fairly lengthy derivation, we recall only the
most important features. For details, the interested reader may
refer to the original publications referenced herein.

Classical Nucleation Theory (CNT). In the droplet model
of classical nucleation theory, the interface is assumed to be
mathematically sharp, and the free energy of small clusters is
expressed in terms of bulk and interfacial contributions yielding

for the free energy of the critical fluctuation, where ∆ω is the
volumetric grand (Landau) potential difference between the solid
and liquid states (see e.g. ref 15).

Self-Consistent Classical Theory (SCCT). This approach
corrects for the nonzero free energy of formation of monomers
the classical droplet model predicts (a nonphysical feature16)
by subtracting the monomer free energy, WCNT,1, from the
classical cluster free energy:

(for details, see ref 16).
Diffuse Interface Theory (DIT). This phenomenological

theory relies on the assumptions that bulk properties exist at
least at the center of critical fluctuations and that the distance
of surfaces of zero excess enthalpy and entropy is independent
of cluster size.34 The height of the nucleation barrier is given
by

where δDIT ) γ∞V/∆Hf is the characteristic interface thickness
(usually a small fraction of the full interface thickness), V is
the molar volume, ∆Hf (>0) is the molar heat of fusion, ψ )
2(1 + q)�-3 - (3 + 2q)�-2 + �-1, q ) (1-�)1/2, and � ) ∆ω/
∆h, while ∆ω and ∆h are the volumetric grand potential and
the respective volumetric enthalpy difference between the liquid
and solid. Note that the thickness parameter δDIT as defined
above is usually only a fraction of the interface thickness.17

Indeed, δDIT ) 0.4617σ for the equilibrium solid-liquid
interface of the HS system. As pointed out in ref 17c, eq 3
incorporates a curvature correction up to second order in (δDIT/
R) for the interfacial free energy. Application of the DIT to the
HS system is detailed in ref 12. However, we relax here the
assumption that the solid and liquid phases are incompressible,
made in earlier DIT computations for the HS system.12 Ac-
cordingly, herein the driving force is calculated from the
pressures corresponding to the solid and liquid densities, Fn and
F0, respectively, that have the same chemical potential, µs(Fn)
) µl(F0). Note that, in the HS system, the only contribution to
the enthalpy is from the pressure term, and ∆ω ) -ps(Fn) + p0

and ∆h ) p0 [1 - Fn/F0], where subscripts 0 and n refer to the
initial liquid and the nucleating solid (of equal chemical
potentials), respectively.

WCNT ) (16π/3)γ∞
3/∆ω2 (1)

WSCCT ) WCNT - WCNT,1 (2)

WDIT ) (4π/3)δDIT
3∆ωψ (3)
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Phase Field Models (PFTs). We have considered four
different approaches. Following previous work, the grand
(Landau) potential of the inhomogeneous system relative to the
initial liquid is assumed to be a local functional of the phase
field m monitoring the liquid-solid transition (m ) 0 and 1 in
the liquid and in the solid, respectively) and the volume fraction
φ ) (π/6)σ3F (here, F is the number density of hard spheres):13

where ε is a coefficient that can be related to the interfacial
free energy and the interface thickness, T is the temperature,
while ∆ω(m,...) is the local grand free energy density relative
to the initial state (which, in the presence of an additional
conserved field, such as φ or F, includes a Lagrange multiplier
term, that ensures mass conservation; here, the Lagrange
multiplier is related to the chemical potential of the initial
liquid13). The gradient term leads to a diffuse crystal-liquid
interface, a feature observed in both experiment20 and computer
simulations.21 In this work, the grand potential density is
assumed to have the following two simple forms:

Skewed double-well free energy:

Free energy surface:

where fS(φ) and fL(φ) are the Helmholtz free energy densities
for the solid and liquid states, respectively, while φ∞ and φn are
the volume fraction of the initial liquid phase and the crystalline
phase that provides the largest driving force relative to the initial
liquid, respectively. Different “double-well” g(m) and “inter-
polation” functions p(m) have been used as specified below.
The free energy scale w determines the height of the free energy
barrier between the bulk solid and liquid states. Once the
functional forms of g(m) and p(m) are specified, model
parameters ε and w can be expressed in terms of γ∞ and the
thickness δ of the equilibrium planar interface.22,12,13,18

We have used two sets of these functions. One of them has
been proposed intuitively in an early formulation of the PFT23

and is in use widely:
(a) The “standard” set (PFT/S): These functions are assumed

to have the form g(	) ) (1/4)	2(1 - 	)2 and p(	) ) 	3(10 -
15	 + 6	2) that emerge from an intuitive formulation of the
PFT.23 Here, 	 ) 1 - m is the complementing phase field,
defined so that it is 0 in the solid and 1 in the liquid.

(b) Ginzburg-Landau form for fcc structure (PFT/GL):
Recently, we have attempted the derivation of these functions
for bcc (base centered cubic) and fcc (face centered cubic)
structures2conthebasisofasingle-order-parameterGinzburg-Landau
(GL) expansion that considers the fcc crystal symmetries. This
treatment yields

and

while the expressions that relate the model parameters to
measurable quantities are as follows: εGL

2 ) (8/3)CεS
2, wGL )

wS(4C)-1, where C ) ln(0.9/0.1)[3ln(0.9/0.1) - ln(1.9/1.1)]-1.
This model has been denoted as PFT/GL1 when used with eq
5a and PFT/GL2 when combined with eq 5b. The former can
be obtained as the single component limit of the binary PFT/
GL of ref 18, while the latter is a new construction presented
here the first time. Therefore, though it is similar to the
procedure followed before,13 it is appropriate to briefly outline
the way the properties of the nucleus are determined:

Being in unstable equilibrium, the critical fluctuation (the
nucleus) can be found as an extremum (saddle point) of the
grand free energy.22,12,13,18,19 The field distributions, that ex-
tremize the free energy, can be obtained solving the appropriate
Euler-Lagrange (EL) equations:22,12,13,18,19

and

where δΩ/δm and δΩ/δφ stand for the first functional derivative
of the grand free energy with respect to the fields m and φ.
Here, I ) 1/2ε2T(∇ m)2 + ∆ω(m, φ) is the total grand free energy
density of the system. For the sake of simplicity, an isotropic
interfacial free energy (a reasonable approximation for simple
liquids) is assumed. Note that, due to a lack of a gradient term
for the field φ, eq 7b yields an implicit relationship between m
and φ, which can be then inserted into eq 7a, when solving it.

Assuming an unperturbed liquid (m ) 0, φ ) φ∞) in the far
field (r f ∞) and, for symmetry reasons, a zero field gradient
at the center of the fluctuations, m and dm/dr are fixed at
different spatial locations. Therefore, in this work, eq 7a has
been solved numerically, using a relaxation method24 suitable
for handling such two-point boundary value problems. Having
determined the solutions m(r) and φ(r), the work of formation
of the nucleus, W*, has been obtained by inserting these
solutions into the grand potential functional eq 4.

Of all these phase field models, the latter two (PFT/GL1 and
PFT/GL2), which rely on the Ginzburg-Landau expansion,
incorporate the most detailed physical information on the system
(e.g., crystal structure); therefore, they are expected to provide
the best approximation to the atomistic simulations.

For all models, we have applied the following test: First, we
fix the model parameters in equilibrium, and then we predict
the nucleation barrier in the supersaturated state without any
adjustable parameters, and this is then compared to accurate
data from MC simulation.

3. Thermodynamic Properties

In the computations, if not stated otherwise, we have used
the equations of state Hall obtained for the solid and liquid
states25 by fitting to the molecular dynamics simulation results
of Alder and Wainwright.5 For comparison, we performed a
few calculations with a polynomial equation of state for the
high-density liquid by Tóth,8 which has been fitted to the data
from MD simulations (Figure 1):

∆Ω ) ∫ d3r{ ε2T
2

(∇ m)2 + ∆ω(m, ...)} (4)

∆ω(m) ) wTg(m) + p (m)){ fS(φn) -
∂fL/∂φ(φn)[φn - φ∞] - fL(φ∞)} (5a)

∆ω(m, φ) ) wTg(m) + p(m) fS(φ) + [1 - p(m)] fL(φ) -
∂fL/∂φ(φ∞)[φ - φ∞] - fL(φ∞) (5b)

g(m) ) (1/6)(m2 - 2m4+m6) (6a)

p(m) ) 3m4 - 2m6 (6b)

δΩ
δm

) ∂I
∂m

- ∇ ∂I
∂∇ m

) 0 (7a)

δΩ
δφ

) ∂I
∂φ

- ∇ ∂I
∂∇ φ

) 0 (7b)
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where Z ) p/(FkT) is the compressibility factor, φg ) 0.63885, c0

) -0.8187, c1 ) -3.889, c2 ) -17.407, c3 ) -20.503, c4 )
12.649, c5 ) 60.336, and c6 ) 41.859. We use a recently revised
value for the interfacial free energy γ0 ) (0.56 ( 0.02)kT/σ2,14

while the 10%-90% interface thickness is allowed to change in
the range of d10%-90% ) (3.15 ( 0.15)σ. We note that, in a previous
study, substantially larger interface thicknesses (4.75σ to 5.94σ)
have been used, evaluated from the envelope of the density peaks.13

Our present choice is probably more reliable, as it is consistent
with interfacial profiles obtained for a variety of structure-related
physical properties such as coarse grained density, diffusion, and
the orientational order parameters q4 and q6 at the equilibrium
solid-liquid interface of the hard-sphere system.6 It is worth
mentioning that the interfacial data from atomistic simulations
might underestimate both the interfacial free energy and the
interface thickness due to the limited size of such simulations,
which leads to a long wavelength cutoff in the spectrum of surface
fluctuations. Nevertheless, the surface areas typical for nuclei and
for the equilibrium solid-liquid interface used in atomistic simula-
tions are roughly comparable, so only minor errors are expected
from this source.

4. Results and Discussion

The predictions for the structure of the critical fluctuations are
presented in Figure 2 for the three initial volume fractions (φL )
0.5207, 0.5277, and 0.5343) Auer and Frenkel used in their
atomistic simulations.11 For the CNT, SCCT, and DIT, the
solid-liquid structural order parameter is shown to change from
1 to 0 as a step function at the predicted radius of the surface of
tension,26 defined by the expression [see, e.g., ref 18 or 27]

where ∆ω is the driving force of crystallization (grand potential
difference between the bulk liquid and solid phases).

The size of nuclei falls into the ∼2σ to 4σ range in all the
theoretical predictions, with the latter corresponding to the
smallest driving force (φL ) 0.5207). Remarkably, this is in
reasonable agreement with the snapshot of the respective nucleus
from the MC simulation (Figure 3 of ref 11a). In this size range,
however, the radius of the nuclei is comparable to the thickness
of the interface. Accordingly, the sharp interface approaches
(CNT and SCCT) are expected to be of limited accuracy.

We note the asymmetry of the structural order parameter
profiles from the phase field computations with Ginzburg-
Landau expanded free energies: sharper on the solid side and
more gradual on the liquid side. This is in agreement with the
predictions from our previous work11,18 for fcc structure and
with a full molecular theory by Shen and Oxtoby.19c Interest-

Figure 1. Equation of state for the solid state (compressibility factor
versus volume fraction). Results from atomistic simulations5 are shown
together with the polynomial fit (solid line) to the most detailed data
set by Woodcock5 (full circles). Note the reasonable agreement among
simulation data obtained by different authors. The vertical dashed lines
show the volume fractions of the bulk liquid and solid phases coexisting
at p ) 11.57kT/σ3.

Z(φ) ) { (φ - φg) ∑
i)0

6

ci(φ - φg)i} -1

(8)

Rp ) ( 3W*
2π∆ω)1/3

(9)

Figure 2. Structure of the critical fluctuations as predicted by various
cluster models at three initial liquid volume fractions (0.5207, 0.5277,
and 05343, denoted by solid, dashed, and dash-dotted lines, respectively;
a sequence corresponding to decreasing size): (a) solid-liquid structural
order parameter for the CNT and SCCT (heavy lines, coinciding for
the two models) and for the DIT (light lines); (b) for the single-order-
parameter phase field models, PFT/GL1 (heavy lines) and PFT/S1 (light
lines); (c) structural order parameter profiles (heavy lines) and normal-
ized fractional density difference (light lines) profiles for PFT/S2; and
(d) the same for PFT/GL2. Note the similarity of the solutions from
PFT/S1 and PFT/S2, and also the solutions from PFT/GL1 and PFT/
GL2.
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ingly, the solutions from the PFT/GL1 and PFT/GL2 models
are rather similar, as are those from the PFT/S1 and PFT/S2
models, with the latter showing a significant deviation from the
bulk crystal properties even at the center of the nuclei.

The respective nucleation barrier heights are compared to the
results of Monte Carlo simulations in Figure 3. We find that,
without adjustable parameters, in the investigated volume
fraction range, the predictions of the PFT/GL1, PFT/GL2, and
DIT models are in a reasonable agreement with highly accurate
results from atomistic simulations. In contrast, the other models
(CNT, SCCT, PFT/S1, and PFT/S2) considerably underestimate
the height of the nucleation barrier. The present failure of the
droplet model of the CNT in predicting the free energy of small
clusters is not surprising and is in accord with earlier results
for the HS10c,11 and other systems, including ice-water,19d,g

Ag-Cu,18 and NaCl.28 It is nevertheless remarkable that, unlike
the case of vapor condensation,16 the self-consistency correction
changes the nucleation barrier in the wrong direction. It is
reassuring that, by incorporating more physical details (such as
crystal symmetries) into continuum theory, there is improved
agreement with the atomistic simulations.

Next, we estimate the effect of the error of the input
parameters on the nucleation barrier computed using PFT/GL1.
Using the lower and upper limits allowed by the expressions
γ0 ) (0.56 ( 0.02)kT/σ2 and d10%-90% ) (3.15 ( 0.15)σ leads
to only minor changes in the height of the nucleation barrier
(see Figure 4), which do not influence the conclusions in any
significant way. Similarly, the uncertainties emerging from the
error of the equilibrium pressure and the equations of state are
also negligible.

It is also appropriate to assess how far these results are
influenced by the anisotropy of the solid-liquid interfacial free
energy. In the case of the continuum models, this will require
the solution of the Euler-Lagrange equations in 3D, by adopting
numerical methods recently applied for the analogous problem
of solid-state nucleation.29 However, a less demanding computa-

tion can be made in the case of the comparably accurate
DIT.17b,30 Being in an unstable equilibrium, the enthalpy and
entropy surfaces of the nucleus (as defined in the DIT) have
the equilibrium shape, and the nucleation barrier can be
computed by replacing the volume of the unit sphere in eq 3
by the volume of the equilibrium shape normalized with the
volume of the sphere corresponding to the orientation averaged
interfacial free energy, where the anisotropy of the interfacial
free energy of the solid-liquid interface is given by the Kubic
harmonic expansion of Fehlner and Vosko,31

Figure 3. Nucleation barrier W* measured in kT units versus initial
volume fraction of the liquid phase (φL) as predicted by various cluster
models: CNT, droplet model of the classical nucleation theory; SCCT,
self-consistent classical theory; PFT/S1, single order parameter phase
field theory with the standard double-well and interpolation functions;
PFT/GL1, single order parameter phase field theory with Ginzburg-
Landau free energy; PFT/S2, with the standard double-well and
interpolation functions, structural order parameter, and density field;
PFT/GL2, as PFT/S2, however, with double-well and interpolation
functions from Ginzburg-Landau expansion; and DIT, phenomenologi-
cal diffuse interface theory. For comparison, the nucleation barrier
height from direct atomistic (MC) simulations of Auer and Frenkel11

(Au-F) are also shown. Note that the uncertainty of W* from atomistic
simulation is about ( 1.5kT (see Figure 1 of ref 11a), roughly
corresponding to the size of the symbol used here.

Figure 4. Sensitivity of the nucleation barrier (predicted by PFT/GL1)
to the uncertainty of (a) the interfacial free energy, (b) the interface
thickness, (c) the equilibrium pressure, and (d) the equation of state
for the liquid phase [here, (11) refers to eq 11 of Hall5]. For comparison,
the Monte Carlo simulations of Auer and Frenkel11a (Au-F) are also
shown [in panel (d), empty circles stand for MC results with volume
fractions corresponding to the polynomial equation of state eq 8, as
opposed to the full squares whose volume fraction coordinates have
been computed using eq 11 of Hall5]. Note that the main source of
uncertainty to the nucleation barrier can be identified as the uncertainty
of the interfacial free energy.

γ(n)/γ0 ) 1 + ε1(∑
i)1

3

ni
4 - 3

5) +

ε2(∑
i)1

3

ni
4 + 66n1

2n2
2n3

2 - 17
7 ) (10)
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where the recently revised parameter set,14 γ0 ) 0.559(17)kT/
σ2, ε1 ) 0.072(9), and ε2 ) -0.004(2), has been used. The
equilibrium shape has been computed following the Wulff
construction,32 and it is shown in Figure 5. The anisotropy is
small, and the respective correction to the nucleation barrier is
less than 1%: WDIT

aniso = (1.009 ( 0.001)WDIT
iso, a result that

does not influence the conclusions drawn from the computations
performed with an isotropic interfacial free energy in any
significant way.

The present phase field computations offer a unique possibil-
ity to derive the magnitude of the Tolman length,33 δT, a
parameter introduced some time ago to capture the curvature
dependence of the interfacial free energy, and has been evaluated
for the crystal-liquid interface from atomistic simulations for
the Lennard-Jones system.34 It is defined as the difference of
the radii of the equimolar surface35 and the surface of ten-
sion:26 δT ) Re - Rp. The evaluation of these quantities is
straightforward for the PFT/S2 and PFT/GL2 models, where
the spatial variation of the number density is explicitly
calculated. In the case of the PFT/GL1 model, where we have
a single (structural) order parameter, we have chosen the
following approach: As pointed out by Shih et al.,36 in the
Ginzburg-Landau expansion the PFT/GL1 model is based on,
the fractional density change is expected to be proportional to
m2. Thus, the radius of the equimolar surface can be obtained
from the solution of the EL equation as Re ) [∫4πr2m2(r) dr/
(4π/3)]1/3.

The results for the Tolman length are shown as a function of
initial volume fraction in Figure 6. For the PFT/S2 and PFT/
GL1 models, a positive value is observed at high supersatura-
tions, which continuously decreases toward the negative equi-

librium values. This behavior is consistent with earlier field
theoretic results27,38 and atomistic simulations.34 In contrast, for
PFT/GL2, we have observed a negative Tolman length over
the whole range of volume fractions investigated. It is appropri-
ate to mention that, in the high density region (φ > 0.58), the
Tolman length is extremely sensitive to the choice of the equa-
tion of state of the liquid, especially in the vicinity of the dense
random packed limit, where the equations of state from different
sources may differ significantly.5,38 For example, for PFT/S2
and PFT/GL2, we were unable to solve the EL equations with
the EOS given by eq 8 above φ > 0.58, despite the fact that eq
8 gives indeed an excellent fit to simulation data for the high
density fluid. Such difficulty does not occur for Hall’s EOS. At
this stage, it is unclear whether a more accurate EOS would
mitigate this problem, or it is the phenomenological definition
of the free energy surface (eq 5b) that is responsible for the
absence of the solutions of the PFT/S2 and PFT/GL2 models
at high fluid densities. Work is underway to investigate this
question.

We wish to mention here that a Ginzburg-Landau free
energy functional has recently been constructed for the HS
system relying on the fundamental measure approach to the
density functional theory (DFT-FM), and it has been used to
investigate the liquid-fcc interface and the nucleation barrier.40

This approach has the advantage that it predicts the interfacial
properties of the liquid-fcc interface, whereas the far simpler
continuum models used in the present paper need the interfacial
properties as an input. Unfortunately, while the interfacial free
energies, 0.69kT/σ2 and 0.66kT/σ2, the two variants of the DFT-
FM40 predicted for the equilibrium crystal-fluid interface, are
fairly accurate for approaches based on first principles, these
values significantly exceed the best value (0.56 ( 0.02)kT/σ2

from atomistic simulations. Accordingly, a direct comparison
of the DFT-MF results with our predictions for the nucleation
barrier (obtained with accurate interfacial data) or with the
respective MC results might prove inconclusive.

At this point, we wish to comment on the possible relevance
of our results to nucleation experiments, including those on
colloidal systems that mimic the hard-sphere interaction.41,42

Besides light scattering experiments,41,42 laser scanning confocal
microscopy used in some of the colloidal nucleation experiments
proved a truly powerful technique.42 It is able to follow the
trajectory of the individual colloidal particles, and in this sense
it is an experimental counterpart of the MD simulations:
nucleation can be followed in real time.42 Interestingly, the
agreement between nucleation rates from experiments on
colloidal systems and from computer simulations with the exact
HS potential is not particularly good.11a A possible explanation
is that, due to some remnant charges, the interaction is not yet
the exact HS interaction. This view is supported by the fact
that some of these colloidal systems used in the experiments
crystallize at volume fractions where the true HS system should
not [e.g., the coexistence region is 0.38 < φ < 0.42 (ref 44) as
opposed to 0.492 < φ < 0.543 for the HS system]. As a result,
neither the HS equations of state nor the HS interfacial free
energy data seems to be applicable. Without this information,
however, one falls back to the usual situation: the nucleation
rate can be measured, but then one needs a kinetic theory that
defines the pre-exponential factor of nucleation, J0,43 to evaluate
the free energy of nuclei, and then again a cluster model is
required to evaluate the interfacial free energy. The accuracy
of the interfacial free energy determined so critically depends
on the accuracy of both the pre-exponential factor and the cluster
model. We note that even if J0 is known with some accuracy43

Figure 5. Equilibrium crystal shape (Wulff shape32) corresponding to
the anisotropy function given by eq 10. Note the close to spherical
form.

Figure 6. Tolman length predicted by various phase field models as
a function of the volume fraction of the initial (supersaturated) liquid
state.
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and the experiments indeed refer to homogeneous nucleation,43

such experiments may only be used to validate nucleation
theories, if the interfacial free energy is available with a
sufficient accuracy from an independent source (however, such
information is usually unavailable). This situation makes the
present quantitative test of nucleation theory on the HS system
indeed unique. A similar test could be performed for other
systems after extending the atomistic simulations to obtain the
EOS, the interfacial free energy, and the free energy of nuclei.
Possible candidates are the Lennard-Jones fluid and some
metals (whose interatomic interaction is approximated by the
embedded atom potential), as the required information is
partially available for them.

We mention finally that a straightforward utilization of the
present results could be to combine the advanced cluster models
(DIT, PFT/GL1, or PFT/GL2) validated here with cluster
dynamics computations to improve the quality of interfacial free
energy data extracted from nucleation rate measurements, as
done previously using the Cahn-Hilliard model.44 Although our
results refer strictly to hard spheres, many of the monatomic
liquids, including the Lennard-Jones system and the metals,
display features close to those of the HS system,45 implying
that the present results are probably relevant to a broader range
of systems.

5. Summary

A quantitative test of nucleation theories has been performed
for the hard-sphere systems with the recently updated value of
the solid-liquid interfacial free energy. It has been found that,
after fixing all model parameters using the equilibrium properties
of the solid-liquid interface, the phase field models with
Ginzburg-Landau free energy (PFT/GL1 and PFT/GL2) and a
phenomenological diffuse interface theory (DIT) predict fairly
accurately the height of the nucleation barrier. In contrast, phase
field models using the standard double-well and interpolation
functions (PFT/S1 and PFT/S2) significantly underestimate the
nucleation barrier. Similar behavior is observed for sharp
interface models, such as the droplet model of the classical
nucleation theory (CNT) and the self-consistent classical theory
(SCCT).

Acknowledgment. This work has been supported by the
Hungarian Academy of Sciences under Contract No. OTKA-
K-62588. We are indebted to László Környei (Res. Inst. Solid
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(18) Tóth, G. I.; Gránásy, L. J. Chem. Phys. 2007, 127, 074709; 074710;
PFT/S1-single component limit of binary PFT/S used in these papers; PFT/
GL1-single component limit of binary PFT/GL.

(19) Continuum models of crystal nucleation:(a) Oxtoby, D. W. In
Liquids, Freezing and Glass Transition; eds. Hansen, J. P., Levesque, D.,
Zinn-Justin, J., Eds.; Elsevier: Amsterdam, 1991; p 145. (b) Oxtoby, D. W.
J. Phys.: Condens. Matter 1992, 4, 7627. (c) Shen, Y. C.; Oxtoby, D. W
J. Chem. Phys. 1996, 104, 4233; 1996, 105, 2130. (d) Gránásy, L. J. Mol.
Struct. 1999, 485-486, 523. (e) Gránásy, L.; Oxtoby, D. W. J. Chem. Phys.
2000, 112, 2399. (f) Oxtoby, D. W. Annu. ReV. Mater. Res. 2002, 32, 39.
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