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Abstract. In this contribution our focus is on the phase-field crystal method, which can be viewed as the
youngest methodology in the field of interface computation based on recent work by Elder et al. (Phys.
Rev. Lett. 88, 245701 (2002)). It bridges the gap between the molecular simulation approaches and the
phase-field approach by operating on diffusive time scales yet atomic length scales. Here we review the
fundaments of the phase-field crystal method as well as different models established so far with the aim to
capture the main features of the wide range of phase diagrams found in materials science more and more
comprehensively.

1 Introduction to the phase-field crystal method

In the context of this volume on interface computation across the scales the phase-field crystal method is certainly
the most recent methodological development to be reported. Interestingly, at the same time it deserves a special slot
in the volume, since it bridges the gap between the molecular simulation approaches and the phase-field approach
by operating on diffusive time scales yet atomic length scales. Since it inherits the variational principles for model
equations’ derivation from the phase-field method, let us introduce it via comparison to the phase-field method, which
by now has become an accepted model approach for studying the interfacial dynamics of systems out of equilibrium [1].
In particular, it has found numerous applications for the evolution of interfaces in materials science [1–4]. A classical
example of such an application is solidification: Consider a material that is disordered at high temperature and has two
stable phases at low temperatures. Upon quenching the material from a high to a low temperature, grains of different
stable phases will develop and evolve in competition with each other. Phase-field modeling is able to describe the
time evolution of such a process. To do so, a continuous function of space and time φ(x, t) is introduced —namely the
phase-field— that assumes a different constant value for both stable phases. Close to an interface between two grains,
the value of φ changes rapidly. The phase-field variable introduced in the context of this example can be interpreted
as a scalar order parameter to represent the relative mass fraction of both phases. It allows to model and simulate the
dynamics of interfaces between two different phases, that change their topology during evolution in time —so-called
Stefan problems [5]— elegantly, i.e. without the need to track that interface explicitly. To that end phase-field models
are based on the following Landau form of an equilibrium free energy functional for a two-phase system:

F [φ] =
∫

V

[
ξ2

2
|∇φ|2 + f(φ)

]
dV, (1)

where ξ is just a scalar parameter and f(φ) the free energy density of the system in terms of φ. This function f(φ)
can be expanded into a Taylor series, such that up to fourth order in φ it yields a double-well potential. Terms of
uneven exponent vanish, since f(φ) is by assumption symmetric, i.e. the two different phases are energetically equal.
As a consequence f(φ) is invariant to the transformation φ → −φ. If the two minima of f(φ) define the energy level
0 and occur at ±1, then f(φ) reads

f(φ) =
f0

4
(φ2 − 1)2 , (2)

with a scale factor f0.
a e-mail: heike.emmerich@uni-bayreuth.de



Page 2 of 18 The European Physical Journal Plus

To be able to consider inhomogeneous states as well, the energy density functional has to depend also on the gradient
of the phase-field variable. Lowest-order terms which are compatible with invariance under rotation and translation
are ∇2φ and (∇φ)2. For the calculation of F [φ] the relevant volume integrals of the two terms are identical apart from
a surface integral. This surface integral, however, describes only boundary effects. It vanishes if the phase boundary
is completely inside of the integration volume and thus can be neglected. Therefore it is sufficient to supplement f(φ)
by (∇φ)2, yielding (1) for the full equilibrium free energy functional of the system.

It is possible to give a microscopic derivation for this functional as well. It can be obtained on the basis of a lattice
model for a two-state equilibrium thermodynamic system [6–9]1. Within such a model each of the lattice squares x
of a rectangular grid is occupied by a variable φ(x) ∈ {−1; 1}. The variable φ distinguishes between the two possible
states. For the energy of a given configuration the following ansatz is chosen:

E = −1
2

∑
x,x′

J(x − x′)φ(x)φ(x′) − H
∑
x

φ(x) . (3)

The first term denotes the interaction energy originating from the coupling term J(x− x′), the second term contains
the energy contribution from external fields.

If φ is treated as a continuous variable, it is necessary to include an additional function W (φ(x)) due to entropy.
W is a weight function which determines the physically favored values of φ. With the introduction of W one obtains
the Landau-Ginzburg-Wilson functional as

F = −1
2

∑
x,x′

J(x − x′)φ(x)φ(x′) − H
∑
x

φ(x) +
∑
x

W (φ(x)) . (4)

For W (φ(x)) a symmetric potential with second- and fourth-order terms is the suitable form to describe a two-state
system. For the case of a short-range interaction J(x − x′) (e.g., nearest neighbor interaction) as well as vanishing
external fields, (4) can be transformed into an equation analogous to (1) [6,9]. Thus for thermodynamic equilibrium
microscopic and macroscopic derivation yield the same ansatz for F . Furthermore the microscopic approach provides
additional insight into the nature of diffuse interface models. It yields an understanding, that the finite interface
thickness of a diffuse interface model and the surface energy term originate from finite correlation lengths on a
microscopic scale. Moreover —assuming nearest neighbor interaction and constant coupling constant J— interface
thickness and surface energy are proportional to J .

For non-equilibrium conditions a coherent microscopic derivation is missing. From a macroscopic point of view, (1)
can be extended to account for non-equilibrium conditions by introducing a further energetic term M(φ) such that

F (φ) =
ξ2

2
(∇φ)2 + f(φ) + M(φ) . (5)

The contribution M(φ) depends on the special physical properties of the system under consideration, e.g., the un-
derlying phase diagram. Together with f(φ) this additional term M results in a double-well potential, which is no
longer symmetrical with respect to φ → −φ. The dynamic equations obtained from (5) owe the driving force, which
moves the interface, to the term M(φ). In this context the evolutionary equation for the phase-field variable φ can be
interpreted as a mean-field approximation of the non-equilibrium interface dynamic. Formally this evolution equation
can be obtained based on the principles of irreversible thermodynamics (see [1], sect. 4.1, for details) via a variation
of the form

∂φ

∂t
= ∇2 δFi

δφ
, (6)

or
∂φ

∂t
= −δFi

δφ
, (7)

depending on whether φ can be assumed to be locally conserved (eq. (6)) or locally non-conserved (eq. (7)), respectively,

∂φ

∂t
= ∇2 δFi

δφ
+ η (8)

or
∂φ

∂t
= −δFi

δφ
+ η , (9)

if we assume dissipative dynamics. Here η denotes an additional noise term in accordance to the usual Langevin
formulation.

1 Similar ideas allowing to formulate an atomistic counterpart for the phase-field order parameter can be found in [10–13].
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A functional of form (1) applies, if the stable states of the system under investigation are uniform. If this assumption
is not valid, an appropriate energy functional is given by

F =
∫

V

(
1
2
φ

[
(q2

0 + ∇2)2 + a
]
φ +

1
4
φ4

)
dV , (10)

with now two phenomenological parameters q0 and a in dependence of which the system will assume different spatially
varying bulk states. Again an equation of motion can be derived based on the variational principle (6) (respectively, (8)),
which minimizes the free energy giving rise to the following dynamical equation:

∂φ

∂t
= −δF

δφ
+ η = −(a + (q2

0 + ∇2)2)φ − φ3 + η . (11)

If applied, e.g., to Rayleigh-Bénard convection the field φ denotes a linear combination of the fluid velocity perpendic-
ular to the plates and the deviation from the linear temperature gradient between the plates. In this case the model
derivation is motivated by the Swift-Hohenberg amplitude equation approach [14] formulated to describe systems,
where the stable states are periodic, as, e.g., the case for Rayleigh-Bénard convection. Also crystaline solid materials
are periodic. This motivated Elder et al. [15] to apply (11) indeed to the investigation of phenomena in crystaline
materials, however with a conservative equation of motion, thereby constituting the simplistic formulation of the so-
called phase-field crystal method. Since its introduction, the phase-field crystal (PFC) method [15–19] has emerged as
a computationally efficient alternative to molecular dynamics (MD) simulations for problems where the atomic and the
continuum scale are tightly coupled. The reason is that it operates for atomic length scales and diffusive time scales.
Thus for a simple application such as diffusion in gold or copper it runs 106–108 times faster than the corresponding
MD calculation [20]. In that sense it provides, from point of view of multiscale materials modeling, an interesting link
between the phase-field method and MD. Moreover, a connection between classical density functional theory of freezing
and phase-field crystal modeling could be identified in [21,17]. Thereby a second theoretical foundation besides the
Swift-Hohenberg amplitude equation approach could be established. Essentially it motivates the application of PFC
models also for spatially non-uniform non-periodic states.

In the following sections, we briefly discuss these two concepts underlying the phase-field crystal method, i.e. the
amplitude approach for periodic systems as well as the calibration and parametrization of the phase-field crystal
method via classical density functional theory, respectively, in more detail. We then review basic steps in the further
development of the model concept starting from [15], as well as their implication for phase diagram, nucleation and
pattern formation computations in sects. 4 and 5. Finally we conclude with an outlook.

2 Motivation and interpretation of the phase-field crystal approach

Let us assume that we want to apply an equation of kind (11) to model phase transitions in material systems such as
grain growth or epitaxial growth. What would be the main characteristics of such crystal growth processes the approach
should be able to capture? In a first approach we could restrict our focus to essential features such as multiple crystal
orientations, free surface and plastic deformation. Now all models that contain periodic solutions automatically contain
elastic energy in the sense that it costs energy to change their wavelength. Further, multiple orientations are naturally
included by insisting that the free energy functional is rotationally invariant, and dislocations naturally arise when
two crystals of different orientation collide or when it is energetically favorable for them to nucleate. Moreover, we
would expect the phase-diagram of stable states spanned by the two phenomenological parameters q0 and a to mimic
real thermodynamic phase-diagrams of crystaline materials.

The latter can be identified more easily if we turn from the simplistic functional above to a specific conserved
version of the Swift-Hohenberg equation, namely the Brazovskii/Swift-Hohenberg equation [22], which can be written

F =
∫ (

φ

2
[a + λ(q2

0 + ∇2)2]φ + u
φ4

4

)
dV . (12)

Since here φ is assumed to be locally conserved, the dynamical equation governing the system has to be derived based
on (8) resulting in

∂φ

∂t
= ∇2 δF

δφ
+ η = ∇2[(a + λ(q2

0 + ∇2)2)φ + uφ3] + η . (13)

In the context of material systems φ can be interpreted as a field variable related to the number density of the atoms
in the system. a can be related to the driving force of the system, i.e. for example the undercooling. The remaining
parameters —assuming η to be zero— can be derived and justified from dynamical density functional theory (see the
following section 3).
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Fig. 1. Simulation results of crystal growth calculated for τ = −3/4 and (a) s = − b1112
b1111

= 0 (isotropic case) and (b) s = 0.125

(anisotropic case). All other parameters are chosen as given in [24].

3 Calibration of phase-field crystal models

If the above amplitude approach for periodic systems were the only theoretical fundament for the PFC approach, it
could indeed only be applied to periodic systems. Materials as, e.g., ellipsoidal colloids, liquid crystals and glasses with
aperiodic states could not be modeled based on the PFC approach. This limitation could be overcome when a connection
between classical density functional theory of freezing and phase-field crystal modeling could be identified [17,21],
establishing a second theoretical fundament of the PFC approach. More precisely one may say, that the classical
density functional theory allows to parametrize a given phase-field crystal model. To explain this in more detail for
an extension of (12), which can give rise to anisotropic states as well based on a functional of form

F =
∫

V

(
1
2
φ

[
−τ + aij

∂2

∂xi∂xj
+ bijkl

∂4

∂xi∂xj∂xk∂xl

]
φ +

1
4
cφ4

)
dr, (14)

where aij is a symmetric matrix and bijkl is a tensor of rank 4 with the symmetry of an elastic tensor: i ↔ j, k ↔
l, (i, j) ↔ (k, l) as basis of the PFC model under consideration. Its dynamics is then given by the following partial
differential equation:

	φ̇ = Δ

([
−τ + aij

∂2

∂xi∂xj
+ bijkl

∂4

∂xi∂xj∂xk∂xl

]
φ + cφ3

)
. (15)

This model has first been published by Prieler et al. in [23]. As stated above it can give rise to anisotropic morphologies
as, e.g., ellipsoidal colloids [23,24] (see fig. 1).

The coefficients occuring in the above anisotropic phase-field crystal can be derived from microscopic density
functional theory [25–28] following a similar line as proposed recently by van Teeffelen et al. [21] for radially symmetric
interactions. The generalization of this route to anisotropic interactions has originally been presented in [24]. It is
summarized here to elucidate the basic principles underlying the parametrization of a given phase-field crystal model
via density functional theory:

Let’s assume that the anisotropic colloids are completely aligned in space. Cartesian coordinates r = (x1, x2, . . . , xd)
will be used in the following, d denoting the spatial dimension. The interaction pair potential between two aligned
particles is u(r) [29]. The latter function is anisotropic, in general, i.e. it does not only depend on |r|. Other examples
for these anisotropic interactions with fixed orientations are oriented hard spherocylinders [30] and charged rods [31–
33], anisotropic Gaussian potentials [34], board-like colloidal particles [35], colloidal molecules [36], as well as patchy
colloids [37] and proteins [38,39]. Henceforth inversion symmetry is assumed

u(−r) = u(r). (16)

Dynamical density functional theory for anisotropic situations [40] is now generalized from the isotropic case as follows.
The dynamical evolution of the time-dependent one-particle density field ρ(r, t) is:

ρ̇(r, t) = (kBT )−1∇ ·
[←→

D ρ(r, t)∇δF [ρ(r, t)]
δρ(r, t)

]
. (17)

Here kBT is the thermal energy, and ∇ = (∂/∂x1, ∂/∂x2, . . . , ∂/∂xd) is the d-dimensional gradient.
←→
D =

diag(D1,D2, . . . , Dd) denotes the diagonalized diffusion tensor with the anisotropic short-time translational diffu-
sivities of the anisotropic particle. For a given (hydrodynamic) shape of the particle, explicit expressions for Di are
available [41,42]. Furthermore, in eq. (17), F [ρ(r, t)] is the equilibrium density functional which can be split as

F [ρ(r)] = Fid [ρ(r)] + Fex [ρ(r)] + Fext [ρ(r)] , (18)
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where
Fid [ρ(r)] = kBT

∫
drρ(r)

{
ln

[
ρ(r)Λd

]
− 1

}
, (19)

with Λ denoting the thermal de Broglie wavelength. The external part involves an external one-body potential V (r, t)
and is given by

Fext [ρ(r)] =
∫

drρ(r)V (r, t) . (20)

Finally, the excess part Fex[ρ(r)] embodies the nontrivial correlations between the particles and must be further
approximated. Henceforth we assume small deviations of the inhomogeneous density profile around a homogeneous
reference density ρ. In this limit, the leading approximation for Fex[ρ(r)] is given by the Ramakrishnan and Yussouff [43]
expression:

Fex [ρ(r)] � Fex(ρ) − kBT

2

∫∫
drdr′Δρ(r)Δρ(r′)c(2)

0 (r − r′; ρ) , (21)

where c
(2)
0 (r − r′; ρ) is the anisotropic direct correlation function of the fluid at density ρ which possesses the same

symmetry as the underlying pair potential u(r). In particular, it is inversion-symmetric

c
(2)
0 (−r, ρ) = −c

(2)
0 (r, ρ). (22)

Moreover, Δρ(r) = ρ(r) − ρ. In Fourier space eq. (21) reads

Fex[ρ(r)] = Fex(ρ) − kBT (2π)d

2

∫
dkΔρ̃(k)Δρ̃(−k)c̃(2)

0 (k, ρ) (23)

with ∼ denoting a Fourier transform. We now expand the direct correlation function c
(2)
0 (k, ρ) in terms of k around

k = 0. (Alternatively fitting procedures can be used, e.g., around the first peak of c
(2)
0 (k, ρ).) This leads to the Taylor

expansion in Fourier space

c̃
(2)
0 (k, ρ) = Ĉ0 +

d∑
i,j=1

aijkikj +
d∑

i,j,k,l=1

bijklkikjkkkl + . . . (24)

corresponding to a gradient expansion in real space. Inversion symmetry (22) enforces all odd orders to vanish. Possible
additional symmetries in the shape of the particles will lead to corresponding restrictions on the tensorial coefficients
aij and bijkl as discussed below.

Inserting this expansion into eq. (17), one gets

ρ̇(r, t) = ∇ ·←→D ∇ρ(r, t) + ∇ ·←→D ∇

⎡
⎣(kBT )−1V (r, t) − (Ĉ0 −

d∑
i,j=1

aij
∂2

∂xi∂xj
+

d∑
i,j,k,l=1

bijkl
∂4

∂xi∂xj∂xk∂xl
)ρ(r, t)

⎤
⎦ .

(25)
If one further uses the constant mobility approximation, ρ(r, t) = ρ in front of the functional derivative in eq. (17)
and if one approximates

Fid [ρ(r)] ≈ kBTρ

∫
dr

{
1
2
φ(r, t)2 − 1

6
φ(r, t)3 +

1
12

φ(r, t)4 − const.
}

(26)

with φ(r, t) = Δρ(r, t)/ρ, one arrives at:

φ̇(r, t) = ρ∇ ·←→D ∇
[
φ(r, t) − 1

2
φ(r, t)2 +

1
3
φ(r, t)3 + (kBT )−1V (r, t) − ρ(Ĉ0 −

d∑
i,j=1

aij
∂2

∂xi∂xj

+
d∑

i,j,k,l=1

bijkl
∂4

∂xi∂xj∂xk∂xl
)φ(r, t)

]
. (27)

This exactly reduces to the anisotropic phase-field model of ref. [23] for the special case d = 2,
←→
D = D0

←→
1 , and a

neglected cubic term in the ideal gas functional expansion in eq. (26). As a remark the latter was retained in other
variants of the PFC model [17,44].

Concluding this section, the anisotropic phase-field crystal model as used in [23] can be derived and justified from
dynamical density functional theory. The derivation points, however, to more realistic approximations for anisotropic
diffusivities. Furthermore, if eq. (26) is used, some approximations can be avoided but these were not found to change
the results significantly for spherical interactions [21].
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3.1 Phenomenological symmetry considerations

We now present phenomenological symmetry arguments for the expansion coefficients aij and bijkl of the anisotropic
PFC model. First we assume that the orientation of the fixed particles is set by a single unit vector E only which
is invariant under space inversion (r → −r). This is the case for d = 2 and for rotationally symmetric particles in
d = 3. Then, any gradient term in the scalar free energy functional must involve an even number of gradients due to
space inversion symmetry. Rotational symmetry of space then requires that only combinations of E ·∇ and ∇ ·∇ are
nonvanishing in the functional. Therefore the only possibility for physically relevant gradient terms is

d∑
i,j=1

aij
∂2

∂xi∂xj
= λ1(E · ∇)2 + λ2Δ, (28)

and
d∑

i,j,k,l=1

bijkl
∂4

∂xi∂xj∂xk∂xl
= λ3(E · ∇)4 + λ4(E · ∇)2Δ + λ5Δ

2, (29)

where λ1, λ2, λ3, λ4, and λ5 are scalar prefactors. This reduces the number of independent degrees of freedom in aij

and bijkl down to 5.
In the case of different fixed vectors, say E and B, there are corresspondingly more terms allowing for more freedom

in aij and bijkl. This is realized, e.g., for biaxial colloidal particles in two crossed external fields along E and B.

4 Extensions, generalizations and refinements of the concept

In this article, our special focus is on such extensions of the phase-field crystal method, which are aiming particularly
at capturing realistic phase diagrams more and more accurately. For clarity purpose we thereby restrict our focus
to the “one-mode” to “two-mode” to “eighth-order–fitting version” route that can be found as main route in the
literature. To understand this main route of PFC extension for the above purpose let us start again with the simplest
phase-field crystal model given by the Swift-Hohenberg model equation above. If one compares this simplest form of
the PFC model with classical density functional theory (DFT), it is based on the same idea of representing the free
energy of a material by a functional of its density [43,45,46,28,47–49]. The precise functionals employed, however,
differ due to the fact that the DFT methods seeks a most realistic mean-field description of the crystal density field
n(r) with aim to reproduce quantitatively as accurately as possible the properties of a material [50]. Expressing n(r)
as expansion of the following form:

n(r) = n0

(
1 +

∑
i

uie
iKi·r

)
, (30)

where each Ki represents a different reciprocal lattice vector, this implies taking into account a large number of terms
of the expansion. On the contrary, PFC models consider much lesser terms in the expansion to be able to simulate
larger time and length scales of materials evolution. Now the Brazovskii/Swift-Hohenberg–based [22], PFC approach
with the free energy functional (12) is in the end a one-mode model truncating eq. (30) to one set of RLVs with equal
magnitude |Ki| = q0 [50]. The price paid is that only a small number of crystal structures can be modeled with that
kind of one-mode PFC model (see sect. 5 for further details). This motivated the authors of [50] to extend model (12)
to a two-mode phase-field-crystal model based on the following free energy density:

f =
φ

2
[
a + λ(∇2 + q2

0)2((∇2 + q2
1)2 + r1)

]
+ u

φ4

4
. (31)

This model truncates eq. (30) to two sets of RLVs, one with magnitude |Ki| = q0 and one with |K ′
i| = q1. Even

though the new model (31) has so far only been demonstrated to produce stability domains for fcc and bcc phases, one
gain of the model is that it can produce fcc structure close to the critical point, i.e. in the regime of linear elasticity.

The free energies of the one-mode and two-mode PFC models can be re-cast into a unified form in terms of the
parameter λ = R1/(1+R1) ∈ [0, 1] (R1 is the relative strength of the first- and second-mode contributions [50]), which
can be used to interpolate between the 2M PFC (λ = 0) and 1M PFC (λ = 1) models:

F =
∫

dr
{

ψ

2
[
−ε + (1 + ∇2)2 × (λ + {1 − λ}{Q2

1 + ∇2}2)
]
ψ +

ψ4

4

}
, (32)
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Fig. 2. (a) Single-mode approximation to the phase diagram of the 1M PFC model in 2D [15]. (b) Section of the 3D phase
diagram of 1M PFC model evaluated by the Euler-Lagrange method described in [51]. Note the stability domains of the bcc,
hcp, and fcc phases. The liquid is unstable to the right of the heavy gray line. Here ε = |r∗|.

where ψ ∝ (ρ − ρref
L )/ρref

L is the scaled density difference relative to the reference liquid of particle density ρref
L .

The reduced temperature ε ∝ a can be related to the bulk moduli of the fluid and the crystal, whereas Q1 = q1/q0

(= 2/31/2 for fcc [50]) is the ratio of the wave numbers corresponding to the two modes.
An improved representation of real bcc materials has been achieved by Jaatinen et al. [52] in another extension

of the 1M PFC approach that they call the eighth-order–fitting model (EOF). This model reproduces a range of
thermodynamic properties of pure iron (including the anisotropy of the solid-liquid interface free energy) owing to
the extra model parameters emerging from a higher-oder expansion of the direct correlation function, which ensure a
higher degree of flexiblity.

A still different approach obtained by the introduction of an anisotropic tensor in the free energy functional, was
motivated and outlined above in sect. 3. The implications of these model extensions with respect to phase diagrams,
nucleation and pattern formation are illustrated in the following sect. 5.

5 Phase diagrams, nucleation and pattern formation

5.1 Phase diagrams

The different versions/extensions of the PFC model, reviewed in sect. 4, have been designed to prefer different crystal
structures; hence they lead to different phase diagrams, whose form in turn depends on the dimensionality of the
system. In 2D and 3D, the 1M PFC (the original theory by Elder et al. [15]) leads to the phase diagrams shown
in fig. 2. In 2D, a single crystalline phase appears (the triangular phase) that coexists with the liquid and a striped
phase [15]; whereas in 3D, both full thermodynamic optimization [52] and an equivalent method relying on solving
the Euler-Lagrange equation [51], identifies stability domains for the bcc, fcc, and hcp structures. Apparently, the 1M
PFC model prefers the formation of the bcc phase near the critical point. In contrast, the 2M PFC model of Wu et
al. designed to realize fcc crystallization [50], suppresses the bcc phase (fig. 3(a)). The 2M PFC model incorporates
the 1M PFC model as a limiting case. Interpolation between 1M PFC and the fully fcc limit (R1 = 0), in terms of the
parameter R1 leads to the appearance of a bcc stability domain in the vicinity of the critical point (fig. 3(b)). (R1 is
the ratio of the Fourier amplitudes for the density waves having the second and first neighbors RLVs as wave vector.)
Whether this is accompanied with the appearance of an hcp stability domain, as in the 1M PFC limit, is yet unclear.

The applicability of the EOF PFC model has been demonstrated for Fe [44]. The free energy vs. particle density
curves for the solid and liquid phases, which were used to determine the equilibrium conditions at the melting point,
are shown in fig. 4. No phase diagram has been published for this model. It appears that much like the original the
1M PFC model, it prefers bcc freezing.

Another attempt to control the preferred crystal structure manipulates the two-particle direct correlation function
so that its peaks prefer the desired structural correlations [53]. The phase diagram and the respective free energy curves
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Fig. 3. (a) Single-mode approximations to the phase diagram of the 2M PFC model in 3D for R1 = 0 [50]. (b) The same for
R1 = 0.05. Note the small bcc stability domain near the critical point.

Fig. 4. Free-energy density for the liquid (solid) and bcc (dashed) Fe as a function of reduced particle density at the melting
point in the EOF PFC model [44]. Crosses denote the equilibrium points obtained by the common tangent method.

are shown for a case that forces coexistence between the bcc and fcc structures (fig. 5). The binary generalization of
the 1M PFC model in 2D has been presented in detail by Elder et al. [17]. The phase diagram of a binary system
that shows eutectic solidification is shown in fig. 6. The 3D extension of this approach has been investigated by Tóth
et al. [51]. The map of thermodynamic driving force for solidification as a function of composition and density of the
initial liquid is shown in fig. 7. 3D eutectic solidification has indeed been observed in the domain of the largest driving
force.

One of the most intriguing questions is how to extend the PFC framework to accommodate the properties of real
materials including alloys. A binary extension of the EOF PFC model might be worth exploring.

5.2 Crystal nucleation in 2D and 3D

Crystal nucleation can be handled in two ways within the framework of PFC models: i) Via finding the properties
of the critical fluctuations (nuclei) by locating the respective solutions, which extremize the free energy functional;
ii) by adding noise to the equation of motion. Both approaches have their limitations. i) is expected to work for
small undercoolings, where the individual heterophase fluctuations do not interact. Furthermore, it is not immediately
straightforward how one should address possible non-crystalline nucleation precursors. In turn, in the case of ii) it
is not clear conceptually, which fraction of the thermal fluctuations is already integrated into the free energy, and
which wavelengths should yet be added (see, e.g., [54,55] and the discussion in [56,57]) as noise to the equation of
motion; a question inherently related to the proper choice of the high-frequency cut-off one needs to make to avoid an
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Fig. 5. (a) Phase diagram for a system whose direct correlation function was manipulated so that coexistence between the fcc
and bcc structures is realized [53]. (b) Free energy vs. reduced density near the peritectic temperature in the same model.

Fig. 6. Phase diagram for the binary 1M PFC model in 2D [17], as a function of parameters related to the undercooling (ΔB0)
and to the chemical composition (δN). In the appropriate range indeed eutectic solidification has been observed with both solid
phases having a triangular structure.

ultraviolet catastrophe in 3D. Furthermore, the addition of noise to the equation of motion changes the free energy,
the phase diagram, and the interfacial properties. While, in principle, correction of these is possible via parameter
renormalization [58,59], further study is needed in the case of PFC models.

On the other hand, the original free energy functional used in i) seems to miss the effect of longer wavelength
fluctuations, which could move the system out of a metastable state. Considering these, i) and ii) may be considered
as the approaches that provide complementary, probably qualitative information of the crystallizing system. First, we
review results obtained following route i).

5.2.1 Properties of the critical fluctuations

a) Homogeneous nucleation – An adaptation of the string method to find the saddle point of the free energy functional
has been used by Backofen and Voigt [60] for determining the properties of the critical fluctuations in the 1M PFC
model in 2D. The respective density profiles are shown in fig. 8. It is evident that at large supersaturations there are
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Fig. 7. Color map for the driving force of eutectic solidification (grand potential density difference relative to the liquid) for
the binary 1M PFC model in 3D [51], as a function of density (n0) and the chemical composition (δN0). Note that solidification
is expected in the region where Δω < 0.

Fig. 8. Particle density profiles for the critical fluctuations forming at different supersaturations (supersaturation increases
from f to a), as obtained by the adaptation of string method for the 1M PFC model in 2D [60].

no bulk crystal properties at the center of the smallest nuclei. They have also reported that small nuclei are faceted
even though the large crystals are not.

Tóth et al. [51] have solved the Euler-Lagrange equation for the appropriate boundary conditions (homogeneous
supersaturated liquid in the far field), to find the free energy extrema far from the critical point (ε = 0.5) for the 1M
PFC model in 2D, where even the large crystals are inherently faceted. It has been found that the free energy surface
has many local minima that map out the shape of the free energy barrier for nucleation as a function of size (fig. 9).
The effective interfacial free energy evaluated from the barrier height converges towards the free energy of the planar
interface as the supersaturation decreases.

A similar analysis has been performed in 3D by Tóth et al. [51] to study heterophase fluctuations in the 1M PFC
model. They have determined the properties of crystal nuclei for bcc and fcc structures. It has been found that, under
the investigated conditions, both the nucleation barrier and the driving force are fairly close for the two structures
implying comparable interfacial free energies.

b) Heterogeneous nucleation – Tóth et al. used a periodic external potential to incorporate crystalline substrate into
the Euler-Lagrange method for determining the properties of faceted heterogeneous nuclei [51]. They have observed
the adsorption of a monolayer of particles on the surface of substrate that reduced the formation energy of nuclei
substantially, and lead to a contact angle of 60 deg. determined by the crystal structure. Further studies aimed at
determining the role played by lattice mismatch, crystal structure, etc. are yet required.
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Fig. 9. Nucleation barrier vs. size relationship for homogeneous crystal nuclei with faceted interfaces in the 1M PFC model
as obtained by solving the Euler-Lagrange equation at ε = 0.5 and ψn

0 = −0.5134 + 0.0134/2n, where n = 0, 1, 2, . . . , 7,
respectively [51].

Fig. 10. Snapshots of early and late stages of isothermal solidification in 1M PFC simulations performed in 2D with initial
reduced particle densities of ψ0 = −0.55,−0.50,−0.45,−0.40 and −0.35 [66]. (a)–(e) Early stage: the respective reduced times
are 250, 75, 37.5, 25, and 17.5. (f)–(j) Late stage: the same areas are shown at reduced time 1500. (418 × 418 fractions of
2048 × 2048 sized simulations are shown. Other simulation parameters were: ε = 0.75 and (noise strength) α∗ = 0.1. Reduced
particle density maps are shown.)

5.2.2 Simulation of crystal nucleation

a) Homogeneous nucleation – A systematic study of the effect of the noise strength on the grain size distribution has
been performed by Hubert et al. [61] for the original PFC model in 2D. Freezing of undercooled liquids often starts with
the nucleation/formation of metastable phases. Mounting theoretical and experimental evidence shows that even in the
simplest systems (including the Lennard-Jones and hard-sphere model systems, and 2D and 3D colloidal suspensions)
a dense liquid/amorphous precursor precedes the nucleation of the crystalline phase [62–65].

The PFC methods have been used to explore this behavior both in 2D and 3D [51,66]. In 2D, it has been shown
within the framework of the 1M PFC model that at relatively small supersaturations direct crystal nucleation takes
place. Increasing the thermodynamic driving force, first copious crystal nucleation is observed, and at higher driving
forces an amorphous precursor precedes crystalline nucleation [66] (fig. 10). Interestingly, similarly to experiments for



Page 12 of 18 The European Physical Journal Plus

2D colloidal systems [67], no hexatic phase is observed in the 1M PFC simulations (as proven by the form of the radial
decay of the bond-order correlation function [66]).

Similar behavior has been reported for bcc nucleation in compressed Fe melt in 3D in the framework of the EOF
PFC model [51,66]. Here the initial density of the liquid has been increased until the solidification started. For this,
an enormous compression was needed owing to the small size and time scale accessible for the simulations. This
raises doubts whether the applied approximations are still valid, nevertheless, the behavior observed for the EOF
PFC Fe is fully consistent with the results obtained for the 1M PFC model while reducing the temperature (ε). With
increasing driving force first an amorphous precursor nucleates, and the bcc phase appears inside these amorphous
regions [51] (fig. 11). At higher driving forces the amorphous precursor appears simultaneously in space and the bcc
phase nucleates later. Apparently, direct nucleation of the bcc phase requires a longer time than were accessible for
these PFC simulations, suggesting that the appearance of the bcc phase is assisted by the presence of the amorphous
phase, in line with recent predictions by the density functional theory [62] and atomistic simulations [65].

Remarkably, the amorphous matter appearing in these simulations via nucleation (which suggests a first-order
phase transition) seems to coexist with the liquid phase at least in certain parts of the phase diagram of the 1M
PFC model, so this amorphous matter might indeed be different from the usual kinetically arrested amorphous phase.
Interestingly, such coexistence has been reported for empirical model potentials developed for metallic systems (Adams-
Ercolessi potential for Al [68]). The physical ground for the preference for the amorphous precursor requires further
investigation. Recently, Tóth et al. [51] raised the possibility (on the basis of an effective pair potential they evaluated
from the structural data for the amorphous phase) that the interaction potential has a peak at r0

√
2, where r0 is the

radius for the main minimum for the attractive part, which would then disfavor the close-packed order usually favored
in monatomic systems [69].

b) Heterogeneous nucleation – Prieler et al. [23] have explored crystal nucleation on unstructured hard wall in
an anisotropic version of the 1M PFC model, in which the particles are assumed to have an ellipsoidal shape. In
particular, they have investigated how the contact angle depends on the orientation of the ellipsoids and the strength
of the wall potential (fig. 12). A complex behavior has been observed for the orientation dependence, while increasing
the strength of the wall potential reduced the contact angle.

Gránásy et al. [66] have studied crystal nucleation in rectangular corner of structured and unstructured substrates
within the 1M PFC model in 2D. Despite expectations based on the classical nucleation theory, which predicts that a
corner should be a preferred nucleation site, owing to the misfit of the triangular crystalline structure with a rectangular
corner, in the atomistic approach this corner is not a preferable site of nucleation (fig. 13).

5.3 Pattern formation

Owing to the diffusive dynamics, the equation of motion chosen to describe the time evolution of the particle density
in the PFC models enforces, diffusional instabilities that lead to fingering of the growing crystal front are inherently
incorporated. This being so, whether a single component or a binary version is considered: In the case of a single-
component PFC model, diffusive dynamics means that as the growing crystal (of larger particle density than the
liquid) consumes the particles in the adjacent liquid, the only way they can be replenished is via long range diffusion
form the bulk liquid. Accordingly a depletion zone forms ahead of the growing crystal. This resembles the behavior of
colloidal suspensions, in which the micron sized colloid particles move by Brownian motion in the carrier fluid. Relying
on this similarity, the single component PFC models can be considered as reasonable tools to address colloidal crystal
aggregation. Similar conditions might occur on the surface of substrates, where the adsorbed particles may move by
diffusion in a periodic potential field. 2D PFC models can be used to capture pattern formation due to the interplay
of the inter-particle forces and the periodic potentials representing the symmetries of the substrate.

5.3.1 Pattern formation in single-component PFC

a) Ordering on substrate surfaces – Achim et al. [70] and Ramos et al. [71] have used periodic (pinning) potentials in
the PFC model to represent the effect of a periodic substrate on the surface layer. They have explored commensurate-
incommensurate transitions as a function of the strength of the pinning potential and the lattice mismatch using a
two-mode (hexagonal-square) ansatz and numerical simulations (see fig. 14).

b) Pattern formation in 2D colloidal systems – choosing a suffucuently large value for the parameter ε, where
the solid-liquid interface is faceted, Tegze et al. [72,73] have investigated solidification morphologies as a function
of the thermodynamic driving force. It has been found that the diffusion controlled growth mode observed at low
driving forces and is characterized by faceted interfaces changes to a diffusionless growth mode of a diffuse solid-liquid
interface that produces a crystal whose density is comparable density to the density of the liquid due to quenched-in
vacancies. This “density trapping” phenomenon is analogous to the solute trapping observed in rapid solidification of
alloys, where due to lack of time for partitioning solids of non-equilibrium compositions form. These two modes have
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Fig. 11. Crystal nucleation in compressed Fe liquid in the EOF PFC model [51]. Snapshots taken at four instances (from top
to bottom, the dimensionless time is t = 153, 160, 220, and 990). Circles drawn around density peaks are shown on the left. The
“particles” are colored in red if they have a bcc-like neighborhood according to a structural analysis performed in terms of the
q6 order parameter. Histograms showing the probability distribution for q6 and the time dependence of the bcc-like fraction
(X) are presented on the right. The blue vertical line shows the q6 value corresponding to the ideal bcc structure.

already been observed experimentally in colloidal systems [74]. It has been shown that the two modes can coexist and
lead to a new branching mechanism that differs from the usual diffusional instability driven branching that leads to
the formation of dendritic structures. This new mechanism explains the fractallike and porous growth morphologies
observed in 2D colloidal systems (fig. 15), and may be relevant for the diffusion controlled to diffusionless transition
of crystallization in organic glasses.
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Fig. 12. Heterogeneous nucleation in an anisotropic version of the 1M PFC model in 2D [23]. The dependence of the contact
angles (γ1 and γ2) on the orientation Θ of the ellipsoidal molecules relative to the hard wall is represented by a wall potential.

Fig. 13. Heterogeneous nucleation in rectangular inner corners of the 1M PFC model in 2D [66]: (a) on (01) surfaces of a square
lattice (ratio of lattice constant of substrate to interparticle distance a0/σ ≈ 1.39); (b) on (11) surfaces of a square lattice; and
(c) on an unstructured substrate. Note the frustration at the corner and the formation of a grain boundary starting from the
corner at later stages.

Fig. 14. Particle density maps showing commensurate (a)-(c) and incommensurate (d) and (e) structures in the ground state,
obtained by varying the strength of the pinning potential and the misfit [71].
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Fig. 15. Dendritic ((a),(c)) and fractal-like/porous single-crystal growth forms ((b),(d)) in the experiments ((a),(b)) and 1M
PFC simulations ((c)-(e)) [73]. While the growth of the dendritic structure is governed by the diffusion field around it (see
the depletion zone around the crystal), the fractal-like/porous growth forms on the right have slow interfaces growing under
diffusion control and fast interfaces traveling with a constant velocity. A close-up of the interface is shown in (d) for “fast”
mode: extended structural ordering on the liquid side and “slow” mode: sharp interface with deep depletion zone ahead.

Fig. 16. Dendritic and eutectic growth in 2D (first row [75]; second row [76] and [51]) and 3D (third row: bcc and fcc
dendrites [51], and bcc eutectics [51]) in the binary 1M PFC model.
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Fig. 17. PFC simulation for CoAg alloy formation on Ru (0001) substrate [77]. Black and yellow circles represent Ag and Co
atoms, whereas the empty circles stand for hcp sites on the Ru (0001) surface. Left: pseudomorphic nanoscale alloy for equal
composition. Right: Ag-rich system.

Fig. 18. The figure provides on outlook on the possible further development of phase-field–based research in materials science
measured by the number of published papers. In this form it was given by H. Assadi in 2004 [83], arriving at a curve similar
to that for FEM just shifted by 16 years. If this curve can simply be shifted by another 14 years to show the development of
phase-field-crystal–based work in materials science will depend to a large extend on the question on how it will become possible
to model the multitude of different phase diagrams in materials science even more accurately, i.e. going beyond what has been
discussed with respect to that issue in sects. 4 and 5 of this article. Figure kindly provided by Hamid Assadi.

5.3.2 Pattern formation in binary PFC models

Dendritic and eutectic solidification have been addressed in the binary version of 1M PFC model by Elder et al. [17]
in 2D [51,17,75,76] and 3D [51] (fig. 16). It has been shown that in the PFC model, binary eutectic solidification may
lead to the formation of eutectic colonies due to the diffusive dynamics applying to the total number density [51].

Muralidharan and Haataja [77] have extended 1M PFC model for describing stress induced alloying of bulk-
immiscible binary systems on substrate by adding a potential energy term describing the substrate and a regular
solution term. Fixing the model parameters to data for CoAg/Ru(0001), they demonstrated that the model captures
experimentally observed morphologies (fig. 17).

6 Summary and outlook

In this article we have introduced the phase-field crystal method in comparison to the phase-field method. Further we
have reviewed basic steps in its generalization and further development to become a more and more comprehensive
tool to capture realistic materials’ phase-diagrams, nucleation and pattern formation. Certainly these have not been
the only applications of the phase-field crystal method in materials science over the past decade: for other applications
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such as simulations of features of crack propagation [17] and plasticity [16,78] from the atomic to the micro-scale,
protein crystals in a membrane [79], or liquid crystals [80–82] we refer the reader to the just provided literature and
references therein.

Here we would like to conclude with an outlook, which we relate to an outlook that was given by H. Assadi in a
talk 2004 on the phase-field method. In it he compared the development of phase-field based research to other fields of
materials science and extrapolated it to the year 2020 ariving at a curve quite similar of that for FEM just shifted by
16 years [83] as depicted in fig. 18. If this curve can simply be shifted by another 14 years to show the development of
phase-field crystal method based work in materials science will depend to a large extend on the question in how far it
will become possible to model the multitude of different phase-diagrams in materials science still more quantitatively,
i.e. going beyond what has been discussed with respect to this issue in sects. 4 and 5 of this article.

This work has been supported by the EU FP7 Collaborative Project ENSEMBLE under Grant Agreement NMP4-SL-2008-
213669 and by the German Research Foundation (DFG) in the context of DFG Priority Program 1296.
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