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A simple dynamical density functional theory, the phase-field crystal (PFC)
model, was used to describe homogeneous and heterogeneous crystal
nucleation in two-dimensional (2D) monodisperse colloidal systems and
crystal nucleation in highly compressed Fe liquid. External periodic
potentials were used to approximate inert crystalline substrates in
addressing heterogeneous nucleation. In agreement with experiments in
2D colloids, the PFC model predicts that in 2D supersaturated liquids,
crystalline freezing starts with homogeneous crystal nucleation without
the occurrence of the hexatic phase. At extreme supersaturations, crystal
nucleation happens after the appearance of an amorphous precursor both
in two and three dimensions. Contrary to expectations based on the
classical nucleation theory, it is shown that corners are not necessarily
favourable places for crystal nucleation. Finally, it is shown that by adding
external potential terms to the free energy, the PFC theory can be used to
model colloid patterning experiments.

Keywords: density functional theory; nucleation; heteroepitaxy; patterning;
colloid; two-dimensional freezing

1. Introduction

The order of the liquid–solid transition depends on dimensionality. According to the
theoretical expectations of Kosterlitz, Thouless, Halperin, Nelson and Young
(KTHNY) [1–3], in two dimensions, melting takes place in two second-order
transitions at two distinct temperatures (Tm and Ti) [4]. First the dissociation of
thermally activated dislocation pairs transforms the crystal into an orientationally
ordered (hexatic) phase at the melting temperature, Tm, and then the dissociation of
free dislocations drives the system to form an isotropic fluid at Ti4Tm. This view is
supported by computer simulations [5–8] and by experiments on colloidal systems
[9–13], however, the order of the two transitions seems to depend on details of the
interparticle interaction and finite-size effects [14]. Some computer simulations
indicate that the hexatic phase is metastable [15,16]. Remarkably, experiments in
two-dimensional (2D) colloidal systems suggest that crystallisation after deep
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quenching happens by direct nucleation of the crystalline phase from the liquid [17]
implying a first-order transition. Interestingly, in some 2D colloidal systems a two-
step crystallisation process is observed, however, the precursor is rather an
amorphous state, not the hexatic phase [18–20].

In three-dimensional (3D) non-equilibrium liquids, crystallisation is a first-order
phase transition, and the crystalline phase appears via nucleation, a process in which
heterophase fluctuations form, the atomic structure of which resembles that of the
crystalline phase at their central part [21,22], whereas a continuous transition to the
liquid phase is seen in the interfacial layer surrounding this central part [23]. Whereas
the intrinsic thickness of the interfacial layer might be fairly small [24], due to
capillary waves, the shape of these particles fluctuates, so that its time average may
lead to a broader, diffuse interface as in the case of planar interfaces [24]. In
qualitative agreement with the classical nucleation theory, the free energy of
formation of these heterophase fluctuations shows a maximum as a function of size
[21]. The maximum is the critical fluctuation (or nucleus), and represents a
thermodynamic barrier: fluctuations that are larger grow with a high probability,
while the smaller ones decay. It appears that, in agreement with Ostwald’s step rule,
the first appearing solid is not necessarily the stable crystalline phase; it might be a
metastable phase, whose atomic structure is closer to the structure of the liquid than
the stable crystalline phase [25]. For example, there are theoretical expectations that
in simple liquids the first nucleating phase has the bcc structure [26–28]. Indeed this
expectation is supported by atomistic simulations for the Lennard-Jones system
[23,29] and by experiments showing metastable bcc nucleation in supersaturated
superfluid 4He, in preference to the stable hcp phase [30]. Atomistic models based on
the density functional technique (DFT) suggest that crystallisation might happen via
a dense liquid/amorphous precursor [31,32] reminiscent to the two-step transition
seen in 2D colloidal systems [18–20]. Other theoretical work implies that the presence
of a metastable fluid critical point might assist crystal nucleation via a dense liquid
precursor [33–37]. These findings raise the possibility that the two-step crystal
nucleation via a precursor state might be a fairly general phenomenon both in two
and three dimensions. As for the structure of the (probably metastable) precursor,
it may be amorphous or crystalline, depending on the system.

The formation of the heterophase fluctuations can be assisted by the presence of
heterogeneities in the liquid, such as solid walls, floating solid particles, free surfaces,
etc. Their main effect is that their atomic arrangement may induce ordering in the
liquid adjacent to the wall [38–41]. This ordering of the liquid either helps or prevents
the formation of heterophase fluctuations [42]. When the structure of the ordered
liquid layer is compatible with the crystal structure to which the liquid freezes, the
formation of heterophase fluctuations is enhanced at the wall, a phenomenon termed
heterogeneous nucleation [43,44], as opposed to homogeneous nucleation, where the
only heterogeneities are the internal fluctuations of the liquid phase. Heterogeneous
nucleation is probably the most ubiquitous mechanism to start crystallisation of
undercooled liquids. It plays an essential role in determining the microstructure of
crystalline materials, and has a continuously growing importance in manipulating
crystallisation morphology on the nanoscale [45–50]. Unfortunately, in practical
cases, little is known of liquid ordering and/or the molecular interaction between the
wall and the solid and liquid phases. The heterogeneous nucleation process depends

124 L. Gránásy et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
G
r
a
n
a
s
y
,
 
L
a
s
z
l
o
]
 
A
t
:
 
1
4
:
1
9
 
5
 
N
o
v
e
m
b
e
r
 
2
0
1
0



on atomistic details, such as the structure of the wall, its chemical properties,
surface roughness, and ordering of the liquid at the wall, etc. The classical
approach to heterogeneous nucleation relates the nucleation barrier to the
equilibrium contact angle #, which in turn reflects the relative magnitudes of the
wall–solid (�WS), wall–liquid (�WL) and solid–liquid (�SL) interfacial free energies
[51]: cos#¼ (�WS� �WL)/�SL. It relies on the droplet or capillarity approximation
that neglects the anisotropy of the interfacial free energies, and regards the
interfaces as mathematically sharp. Then the critical fluctuation for homogeneous
nucleation is spherical, has the radius R*¼ 2�SL/Dg, while the nucleation barrier is
Whom¼ (16�/3)(�3SL/Dg

2), where Dg is the driving force for solidification (the grand
potential difference between the bulk solid and liquid phases). In this approximation,
in the presence of a flat wall, only that fraction of the homogeneous nucleus
(a spherical cap) needs to be created by thermal fluctuations, which realises the
contact angle at the triple junction line. Accordingly, in the heterogeneous
case, the nucleation barrier is reduced by the catalytic potency factor
f(#)¼ (2þ cos#)(1� cos#)2/4� 1, so that Whet¼Whom f(#) [52,53]. Accordingly,
2D and 3D corners and conical cavities are preferred nucleation sites [53,54].
Whereas the classical model of heterogeneous nucleation captures some trends
qualitatively [43,44,54], it can be expected to be accurate only for large sizes. For
example, in most cases, the nuclei are comparable in size to the interface thickness
(as in [21,23]), raising doubts concerning the applicability of the classical
(sharp interface) droplet model. Indeed, in the case of homogeneous nucleation in
the hard-sphere system, the droplet model fails spectacularly [21]. An interesting and
practically important limit, in which quantitative predictions are possible for foreign-
particle-induced crystallisation is, when these particles are ideally wet by the
crystalline phase, i.e. the nucleation process is avoided and the conditions of free
growth limit the ability of a particle to start crystallisation. This case has been
investigated extensively by Greer et al. [55–57].

Some of the difficulties associated with the classical model of heterogeneous
crystal nucleation can be removed using advanced continuum models such as the
phase-field theory [58–64]; non-classical effects including liquid ordering at the walls
[62,63], the presence of surface spinodals [62,63] or nucleation of an intermediate
phase on the substrate [64] can also be addressed. Unfortunately, usually it is difficult
to relate the parameters of these coarse-grained models to microscopic features.

In order to handle the interaction between the substrate and the solidifying
liquid, one needs an atomistic approach. Atomistic simulations, such as molecular
dynamics and Monte Carlo simulations have provided important information on the
microscopic aspects of the wetting of foreign walls by liquid and crystal [38–41,65].
Recent Monte Carlo studies revealed the importance of the line tension [38,65] in the
case of unstructured walls. It has been also shown that for large clusters the classical
description of heterogeneous nucleation works well, while deviations are observed at
large undercoolings/supersaturations [65]. Furthermore, the interfacial free energies
for flat and curved interfaces have also been evaluated [65]. Other atomistic
techniques such as the dynamical density functional theory (DDFT) have been used
to address the effect of crystalline seeds of tuneable structure on the process of
crystallisation [66]. A recently developed simple DDFT-type approach, termed the
phase-field crystal (PFC) model [67], has been used to investigate heterogeneous
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nucleation on unstructured walls [68]. Two-dimensional PFC simulations have also
been used to explore pattern formation on periodic substrates represented by
periodic potentials [69]. Despite these advances, further atomistic studies of the effect
of patterned/crystalline substrates on crystal nucleation and pattern formation are
warranted.

In the present work, the PFC theory was used to model homogeneous and
heterogeneous crystal nucleation in two and three dimensions and to describe
colloidal pattern formation in two dimensions. We concentrate here on the following
issues: (i) appearance of a precursor state in homogeneous nucleation; (ii)
heterogeneous nucleation on crystalline substrates; and (iii) modelling of 2D
colloidal patterning experiments. In the case of heterogeneous nucleation and pattern
formation, the PFC model is supplemented with an appropriate potential energy
term. To study homogeneous crystal nucleation in 3D metallic materials and
possible appearance of precursors, we adopt a phenomenological extension of
the PFC model, which is able to reproduce the interfacial properties of bcc Fe
fairly well [70].

2. The phase-field crystal (PFC) model

The PFC model is a simple DDFT type approach introduced by Elder and
co-workers [67,71]. Its free energy functional can be deduced [71] from the
Ramakrishnan–Yussouff type perturbative DFT [72] after some simplifications
that lead to a Brazovskii/Swift–Hohenberg form [73,74], whereas the time evolution
is governed by an overdamped conservative equation of motion [67,71]. The
relationship between the DDFT and PFC model has been further clarified in [75].
The PFC model has been used successfully to address elasticity and grain boundaries
[71], the anisotropies of the interfacial free energy [76,77] and growth rate [78],
dendritic and eutectic growth [79–82], glass formation [32], melting at dislocations
and grain boundaries [83,84], and polymorphism [78]. Whereas it is a microscopic
approach, it has the advantage over other classical microscopic techniques, such
as molecular dynamics simulations, that the time evolution of the system can be
studied on the many orders of magnitude longer diffusive time scale, so that the
long-time behaviour and the large-scale structures become accessible. We note
that the diffusion-controlled relaxation dynamics the PFC model assumes is
especially relevant for colloidal systems [66,75], where the self-diffusion of the
particles is expected to be the dominant way of density relaxation. For normal
liquids at small undercoolings, the hydrodynamic mode of density relaxation
dominates, which might be approximately incorporated by adding a term
proportional to @2n/@t2 [85,86].

2.1. Free energy functional

Following Elder and Grant [71], in deriving the free energy functional of the PFC
model, we start from the perturbative density functional theory by Ramakrishnan
and Yussouff [72], in which the free energy difference DF¼F�F ref

L between the
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crystal and a reference liquid of particle density �refL can be written in the following

form, after truncating the Taylor expansion beyond the two-particle term:

DF
kT
¼

Z
dr � ln

�

�refL

� �
� D�

� �
�
1

2

Z Z
dr1dr2 D�ðr1ÞCðr1, r2ÞD�ðr2Þ½ � þ � � � , ð1Þ

where D�¼ �� �refL , whereas C(r1, r2) is the two-particle direct correlation function

of the reference liquid. The density of the solid can be Fourier expanded as

�S¼ �
ref
L {1þ �Sþ

P
KAK � exp(iKr)}, where �S is the fractional density change

between the solid and the reference liquid, whereas K are reciprocal lattice vectors,

and AK are the respective Fourier amplitudes. Introducing the reduced number

density relative to the reference liquid, n¼ (�� �refL )/�refL , one finds that

�¼ (1þ n)�refL , whereas n¼ �Sþ
P

KAK � exp(iKr); thus

DF
kT
¼

Z
dr �ref

L
ð1þnÞ ln 1þnð Þ��ref

L
n

h i
�
1

2

Z Z
dr1dr2 �

ref
L
nðr1ÞCðr1,r2Þ�

ref
L
nðr2Þ

h i
þ�� � :

ð2Þ

To arrive to the free energy functional used in the PFC model, we expand C(r1,r2)

in Fourier space, bCðkÞ � bC0 þ bC2k
2 þ bC4k

4 þ � � �, where bCðkÞ has its first peak at

k¼ 2�/�, whereas the sign of the coefficients is expected to alternate and � is the

interparticle distance. We introduce the dimensionless form of bCðkÞ as

cðkÞ ¼ �refL ĈðkÞ �
Pm

j¼0 c2jk
2j ¼

Pm
j¼0 b2jðk�Þ

2j, which is related to the structure

factor as S(k)¼ 1/[1� c(k)]. Returning to real space, the free energy difference

reads as

DF
kT�refL

�

Z
dr ð1þ nÞ lnð1þ nÞ � n½ �

�
1

2

Z Z
dr1dr2 nðr1Þ

Xm
j¼0

ð�1Þjc2jr
2j

( )
�ðr1 � r2Þnðr2Þ

" #
: ð3Þ

After integrating the second term on RHS with respect to r2 and replacing r1 by r,

we find

DF
kT�refL

�

Z
dr ð1þ nÞ lnð1þ nÞ � n�

n

2

Xm
j¼0

ð�1Þjc2jr
2j

( )
n

" #
: ð4Þ

Note that the reference liquid (of particle density �refL ) is not necessarily the initial

liquid. The particle density of the latter we denote as �0L. For this initial liquid, the
reduced density, n0L¼ (�0L� �

ref
L )/�refL , may differ from 0. Accordingly, this initial

liquid state might be considered as a liquid either compressed or stretched relative to

the reference liquid. As a result, we may now have two parameters to control the

driving force for solidification: the initial liquid number density n0L (not far from the

reference), and the temperature, if the direct correlation function depends on

temperature. Taylor-expanding ln(1þ n) for small n:

lnð1þ nÞ � n� n2=2þ n3=3� n4=4þ � � � for jnj5 1,

Philosophical Magazine 127

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
G
r
a
n
a
s
y
,
 
L
a
s
z
l
o
]
 
A
t
:
 
1
4
:
1
9
 
5
 
N
o
v
e
m
b
e
r
 
2
0
1
0



thus

ð1þ nÞ lnð1þ nÞ � nþ n2=2� n3=6þ n4=12� � � �

and finally one obtains

DF
kT�refL

�

Z
dr

n2

2
�
n3

6
þ

n4

12
�
n

2

Xm
j¼0

ð�1Þjc2jr
2j

( )
n

" #
: ð5Þ

For the m¼ 2 used in the simplest version of the PFC model [67,71] and

considering the alternating sign of the expansion coefficients of ĈðkÞ, Equation (5)

boils down to the following form:

DF � kT�refL

Z
dr

n2

2
1þ b0j jð Þ þ

n

2
b2j j�

2r2 þ b4j j�
4r4

� �
n�

n3

6
þ

n4

12

� 	
: ð6Þ

Introducing the new variables

BL¼ 1þ |b0|¼ 1� c0 [¼(1/�)/(�
ref
L kT), where � is the compressibility],

BS¼ |b2|
2/(4|b4|) [¼K/(�

ref
L kT), where K is the bulk modulus of the crystal],

R¼ �(2|b4|/|b2|)
1/2 [¼the new length scale (x ¼ R � ~x), which is now related to the

position of the maximum of the Taylor expanded ĈðkÞ],

and a multiplier v for the n3 term (v accounts here for the 3-particle correlation to 0th

order), one obtains an equation analogous to the one used by Berry et al. [32] in their

paper on glass transition:

DF ¼

Z
dr IðnÞ ¼ kT�refL

Z
dr

n

2
BL þ BS 2R2r2 þ R4r4


 �� �
n� v

n3

6
þ

n4

12

� 	
, ð7Þ

where I is the total (dimensional) free energy density.
Introducing the new variables x ¼ R � ~x, n¼ (3BS)

1/2� and DF ¼

ð3�refL kTRdB2
SÞD ~F , the free energy functional transforms into a modified

Swift–Hohenberg-type dimensionless free energy:

D ~F ¼

Z
d~r

 

2
r � þ ð1þ ~r2Þ

2
� �

 þ t �
 3

3
þ
 4

4

� 	
, ð8Þ

where, t*¼�(v/2)(3/BS)
1/2
¼�v(3|b4|/|b2|

2)1/2 and r*¼DB/BS¼ (1þ |b0|)/[|b2|
2/

(4|b4|)]� 1, whereas �¼ n/(3BS)
1/2. Note that all quantities involved in Equation

(8) including those with tilde are dimensionless. The form of Equation (8) suggests

that the free energy functional of the m¼ 2 PFC model contains only two

dimensionless similarity parameters r* and t* that can be obtained as combinations

of the original (physical) model parameters. We note, finally, that even the third-

order term can be eliminated. In the respective t*0 ¼ 0 Swift-Hohenberg model, the

state [r*0 ¼ r*� (t*)2/3, �0 ¼�� t*/3] corresponds to the state (r*, �) of the original

t* 6¼ 0 model. This latter transformation leaves the grand canonical potential

difference, the Euler–Lagrange equation and the equation of motion invariant.

Therefore, it is sufficient to address the t*¼ 0 case, as we do in the rest of this work.
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In a recent paper, Jaatinen et al. [70] have proposed an eight-order expansion of
the two-particle direct correlation function in the Fourier space, however, now
around its maximum (k¼ km):

CðkÞ � CðkmÞ � �
k2m � k2

k2m

� �2

�EB
k2m � k2

k2m

� �4

, ð9Þ

where the expansion parameters were fixed so that the quantities C(k¼ 0), km, S(km)
and C00(km), i.e. the liquid compressibility and the position, height, and the second
derivative of C(k) are accurately recovered. This is ensured by

� ¼ �
k2mC

00ðkmÞ

8
and EB ¼ CðkmÞ � Cð0Þ � �: ð10Þ

This choice of parameters with input data for Fe from [76] has led to a fair
agreement with molecular dynamics results for the volume change upon melting, the
bulk modulus of the liquid and solid phases, and the magnitude and anisotropy of
the solid-liquid interfacial free energy [70].

2.2. The equation of motion

In analogy to the DDFT [63,72], we assume overdamped conserved dynamics for the
time evolution of � (enforcing thus mass conservation), however, with a constant
mobility coefficient M�¼ �0D�/kT, which differs from the mobility coefficient used
in the DDFT in that the local density �(r) is replaced by the average particle density
�0. Consequences of this difference are discussed in [72]. Omission of the second-
order time derivative in the equation of motion (overdamped case) leads to a
diffusive dynamics for �(r). This is especially relevant to colloidal systems composed
of micron size particles floating in a carrier fluid, for which differences in the particle
density relax via Brownian motion of the particles. The respective (dimensional)
equation of motion reads as

@�

@t
¼ r M� r

�DF
��

� �
þ

2kTM�

DxdDt

� �1=2

N

( )

¼ r
�0D�

kT

� �
r

@I

@�
þ
X
j

ð�1Þjrj @I

@rj�

" #
þ

2�0D�

DxdDt

� �1=2

N

( )
: ð11Þ

Here the second term in the central expression represents the discretised form of a
conserved fluctuation-dissipation noise [87], while N is a Gaussian white noise of
standard deviation 1. We add this term to enable crystal nucleation in the system
(without the noise term the equation of motion preserves the spatially homogeneous
non-equilibrium fluid state).

To obtain a dimensionless form, first we change from variable � to n, yielding

@n

@t
¼ r

ð1þ n0ÞD�

kT�refL

� �
r
@I

@n
þ
X
j

ð�1Þjrj @I

@rjn

" #
þ

2kTð1þ n0ÞD�

kT�refL DxdDt

� �1=2

N

( )

¼ r Mnr
�DF
�n

� �
þ

2kTMn

DxdDt

� �1=2

N

( )
,
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where we have introduced Mn¼ [(1þ n0)D�/(kT�
ref
L )]. Scaling the time and distance

as t ¼ 	 � ~t and x ¼ � � ~x, where 	¼ �2/[D�(1þ n0)], we find

@n

@ ~t
¼ ~r

1

kT�refL

� �
~r
@I

@n
þ
X
j

ð�1Þjrj @I

@rjn

" #
þ

2

�refL �
dD ~xdD~t

� �1=2

N

( )
,

where I is the total free energy density defined above. Inserting I from Equation (6),

we obtain

@I

@n
¼ kT�refL n 1þ b0j jð Þ þ

1

2

Xm
j¼1

b2j
�� �� ~r2jn�

n2

2
þ
n3

3

( )
~rj @I

@ ~rjn
¼ ~rj n

2
kT�refL bj

�� ��
 �
¼

1

2
kT�refL bj

�� ��ð ~rjnÞ j4 0,

leading to the following dimensionless equation of motion:

@n

@ ~t
¼ ~r2 n 1þ b0j jð Þ þ

Xm
j¼1

b2j
�� �� ~r2jn�

n2

2
þ
n3

3

" #
þ ~r

2

�refL �
dD ~xdD~t

� �1=2

N: ð12Þ

Analogously, if we start from Equation (7), the equation of motion can be

obtained as follows:

@n

@t
¼ r

(
Mnr

�
�DF
�n

�
þ

�
2kTMn

DxdDt

�1=2

N

)

¼ r

(
Mnr

"
@I

@n
þ
X
j

ð�1Þjrj @I

@rjn

#
þ

�
2kTMn

DxdDt

�1=2

N

)

¼ r Mnr ðkT�
ref
L Þ BL þBSð2R

2r2 þR4r4Þ
� �

n� v
n2

2
þ
n3

3

� �� �
þ

2kTMn

DxdDt

� �1=2

N

( )
,

ð13Þ

where Mn¼ [(1þ n0)D�/(kT�
ref
L )].

Introducing the new variables t ¼ 	 � ~t, x ¼ R � ~x, and n¼ (3BS)
1/2�¼

(3BS)
1/2[�0 þ t*/3] into Equation (13), where 	¼R2/(BSMn�

ref
L kT), one arrives at

the equation of motion of the earliest PFC model [67]

@ _0

@ ~t
¼ ~r2 r � 0 þ ð1þ ~r2Þ

2
� �

 0 þ  03
� �

þ ~r

�

D ~xdD~t

� �1=2

N, ð14Þ

where r*0 ¼ r*� (t*)2/3¼ [DB� (v/2)2]/BS¼ (1þ |b0|)/[|b2|
2/(4|b4|)]� [1þ v2 � (|b4|/

|b2|
2)] and the dimensionless noise strength is 
*¼ 2/(3B2

S�
ref
L Rd)¼ 25�d/2|b4|

2�d/2/

[3�d�refL |b2|
4�d/2], whereas the correlator for the dimensionless noise reads as

�ð~r, ~tÞ, �ð~r 0, ~t 0Þ
� �

¼ �
� � ~r2�ð~r� ~r 0Þ � �ð ~t� ~t 0Þ. Summarising, the dynamical m¼ 2

PFC model has two dimensionless similarity parameters r*0 and 
* composed of

the original (physical) model parameters.
The equation of motion has been solved numerically on uniform rectangular 2D

grids using a fully spectral semi-implicit scheme described in [82] and periodic
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boundary condition at the perimeters. A parallel C code relying on the MPI protocol
has been developed. To optimise the performance, we have developed a parallel FFT
code based on the FFTW3 library [88]. The numerical simulations presented in this
paper have been performed on two PC clusters: one at the Research Institute for
Solid State Physics and Optics (RISSPO), Budapest, Hungary, that consists of 24
PCs, each equipped with two 2.33GHz Intel processors of 4 CPU cores (192 CPU
cores in all on the 24 nodes), 8 GB memory/node, and with 10 Gbit/s (InfiniBand)
inter-node communication, and another cluster hosted by the Brunel Centre for
Advanced Solidification Technology (BCAST), Brunel University, West London,
UK, which consists of 20 similar nodes (160 CPU cores), however, with 1 Gbit/s
(standard GigaBit Ethernet) communication in between.

Owing to the ensemble averaging inherent in the DFT type models, one is in
principle unable to simulate crystal nucleation. (Due to the form of the equation of
motion, without perturbation the system stays in a homogeneous liquid state
interminably, independently whether it is stable, metastable or unstable.) This
difficulty can be partly removed by adding Langevin noise (of a correlator
that satisfies the fluctuation-dissipation theorem) to the equation of motion
(see Equations (11)–(14)) to represent thermal fluctuations. Unfortunately, this is
not without conceptual difficulties (see the discussion in [89–91]): if the number
density is considered as an ensemble averaged quantity, the fluctuations are already
incorporated into the free energy functional, and the addition of noise will lead to
double counting part of the fluctuations [89,90]. If, however, the number density is
regarded as a quantity coarse-grained in time, there is phenomenological motivation
to add the noise [91]. The qualitative picture with noise is appealing: we see how
nucleation and growth happen on the atomistic level, therefore in this work, we
incorporate Langevin noise into the equation of motion. To avoid part of the
associated difficulties, we have applied a coloured noise obtained by filtering out the
unphysical short wavelengths that are smaller than the inter-particle distance
(this also removes the ultraviolet catastrophe, expected in three dimensions [92], and
the associated dependence of the results on spatial resolution). Some related issues
and their solution via parameter renormalisation [93] are addressed in another paper
of this volume [94].

2.3. Modelling of an inert substrate

Preliminary simulations have shown that, in the case of potentials that do not cover
the whole simulation area (i.e. substrate and liquid appears together at the
beginning), filling/depletion of the area covered by the potential leads to a transient,
which establishes depletion/excess zones at the perimeter of the substrate that relax
extremely slowly due to the diffusional relaxation dynamics present in the PFC
model, a relaxation that might interfere with crystallisation. To reduce this effect, it
makes sense to assign such a (periodic) density distribution to the substrate initially
that establishes equilibrium with the initial liquid (i.e. the final state towards which
�(x, y) evolves during the transient). To approximate this situation we use the single-
mode approximation to find the equilibrium. In the case of an external potential
of form V(x, y)¼V0þV1[cos(qx)þ cos(qy)], where q¼ 2�/a and a is the
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lattice constant of the external potential, we have used the ansatz �(x, y)¼�Sþ

A[cos(qx)þ cos(qy)] to find that density distribution, which is in equilibrium with the
liquid phase of reduced particle density �0. This ansatz is a reasonable approxima-
tion if the potential is strong enough to dominate the natural 2D hexagonal structure
that the PFC model realises in two dimensions. In practice, for a set of fixed �0, a,
V1, and r*, we have adjusted V0 until the respective substrate solution characterised
by �S and A (found analytically) have a common tangent with the initial liquid
phase. Starting the simulations with this initial density distribution in the substrate
area has significantly reduced the initial transient. This technique has been applied in
some of our simulations for heterogeneous nucleation in two dimensions.

2.4. Parameters used in modelling

Unless stated otherwise, in the 2D colloidal simulations, we have used the following
parameters: r*¼�0.75, 
*¼ 0.1, �0¼�0.5, D	¼ 0.025 and Dx¼�/8. In the 3D
PFC EOF simulations for Fe, we have used the same physical properties as in [70];
however, we have increased the pressure (density) to drive the system out of
equilibrium enough to initiate homogeneous nucleation.

3. Results and discussion

In this section, we first review a few relevant properties of the 2D PFC model,
including its phase diagram and the anisotropy of the interfacial free energy as
reflected by the equilibrium crystal shape. The subsequent sub-sections address first
the homogeneous nucleation, followed by heteroepitaxy and heterogeneous nucle-
ation. Finally, we present a few representative simulations for colloidal controlled
colloidal self-assembly in two dimensions.

3.1. Phase diagram and properties for two dimensions

In two dimensions, the PFC model predicts the following stable phases [67,71]: a
homogenous disordered (fluid) phase, an ordered hexagonal (crystalline) phase, and
a striped phase (see Figure 1). An analogous model, based on the Brazovskii/Swift–
Hohenberg type free energy, has been used widely to understand morphological
transitions in block-copolymers, where these ordered and disordered phases have
familiar realisations [95,96]. In the strong coupling regime of the PFC model, where
the magnitude of r* is large, a section of the fluid-crystal coexistence can be rescaled
to real crystal–liquid systems as pointed out in [71]. Such rescaling can be utilised to
define the reference liquid (whose particle density is �refL ) and the relationship
between r* and the physical temperature. We note here that there is no convincing
theoretical or experimental evidence for the existence of a critical/spinodal point
between the crystalline and liquid phases in a simple single component system [97–
99]. Remarkably, however, a recent molecular dynamics study with a pair potential
resembling a Derjaguin–Landau–Verwey–Overbeek potential with a secondary
minimum (often used for colloids) indicates the presence of a critical point between
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the solid and liquid phases [100]. The state points at which the simulations were
performed and the relevant phase boundaries are indicated in Figure 1.

The equilibrium (Wulff) shapes have been determined in the reduced temperature
range of �0.75� r*��0.05 in the absence of noise (
*¼ 0). It has been obtained by
placing a seven-particle cluster into the simulation box and letting it grow until
establishing equilibrium. (For r*5�0.75 convergence to equilibrium becomes
computationally prohibitive as with increasing distance from the critical point
relaxation to the equilibrium state slows down due to the increasing difference

Figure 2. Equilibrium shape vs. reduced temperature r* as predicted for a crystalline fraction
of X� 0.3 in the absence of noise (
*¼ 0). (a–h): r*¼�0.05, �0.10, �0.15, �0.20, �0.25,
�0.30, �0.325, and �0.35 (see the respective points in Figure 1). Note that the interface
thickness decreases while the anisotropy increases with an increasing distance from the critical
point. The computations have been performed on a 1024	 1024 rectangular grid (the upper
right quarter of the simulations is shown). Equilibration has been performed for a period of
106 dimensionless time steps. Reduced particle density maps are shown.

Figure 1. The �5 0 section of the phase diagram the PFC model predicts in 2D using the
single-mode approximation [67,71]. The circles denote points in which simulations have been
performed. Note the critical point at �c¼ 0 and r�c ¼ 0.
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between the densities of the equilibrium solid and liquid states.) The initial liquid
density has been chosen so that the expected crystalline fraction obtained from the
lever rule is X¼ 0.3. Representative results are shown in Figure 2. We observe a
circular shape above r*��0.25, faceting for r*��0.25, and a hexagonal shape with
sharp corners below r*��0.325. As expected from atomistic simulations and
various theoretical treatments [101], the interface thickness diverges at the critical
point in Figure 1, while the anisotropy increases with increasing distance from the
critical point. It has also been observed that the amplitude of the density peaks
representing the atoms increases with decreasing r*. The present results are in general
agreement with those of a recent work [102], however our investigations have been
performed in a somewhat broader range of the reduced temperature. In two
dimensions, it is expected that the solid–liquid interface roughens for any non-zero
temperature [101,103,104]. For example, in the case of the 2D Ising model on a
triangular lattice, a hexagonal Wulff shape is obtained at T¼ 0, the corners of which
become increasingly rounded with increasing temperature until the equilibrium shape
becomes a circle at the critical point T¼Tc [103]. One may wish to scale the PFC
results for the equilibrium shape onto exact results for the 2d Ising model, to obtain
an approximate temperature scale for the PFC model. However, this should be done
for PFC equilibrium shapes obtained in the presence of noise (
*4 0) to ensure that
the two models belong to the same universality class.

To model the strongly faceted nature of the 2D colloidal crystal aggregates
(evident in many of the experimental images [105,106]), which implies that the
anisotropy is beyond the limit that leads to excluded orientations, we have chosen
here r*¼�0.75 for our simulations for colloids (the corresponding reduced
equilibrium densities for the liquid and solid phases are  e

L¼�0.6514 and
 e
Hex¼�0.4228, respectively). In a few cases, we wished to investigate systems that

are closer to metals, therefore, we have chosen r*¼�0.25 that corresponds to a
system lying on the border of faceting (in this case  e

L¼�0.3388 and
 e
Hex¼�0.2907).

3.2. Modelling of homogeneous nucleation and growth in two dimensions

First, we investigate the nucleation pathways as a function of supersaturation with a
choice of the PFC model parameters (r*¼�0.75 and varied 
*) that fairly reproduce
the faceting seen in 2D colloidal systems. Our main interest here is whether the
formation of a precursor state might indeed be observed. Candidates that might
appear are the amorphous [18–20] and hexatic [1–3] phases. In order to characterise
the structural features of the solid matter, we have determined the pair-correlation
function and the bond-order correlation function. The latter is defined as

g6ðrÞ ¼
��6ðr

0Þ�6ðr
0 � rÞ

� �
�ðr 0Þ�ðr 0 � rÞ
� � ¼Pi

P
i5 j �

�
6ðriÞ�6ðri � rj Þ

gðrÞ
, ð15Þ

where g(r)¼h�(r0)�(r0 � r)i is the pair correlation function and

�6ðrl Þ ¼
1

nl

Xnl
j¼1

expði6�ljÞ:
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Whereas the summation is performed for the nl nearest neighbours of particle l

positioned at rl, �lj is the angle between a fixed reference orientation and the bond

between particle l and its neighbour j, while the averaging is performed for all the

N(N� 1)/2 particle-pair distances [1–3,7,13]. According to the KTHNY theory:

limr!1 g6ðrÞ 6¼ 0 crystal : long-range order;

g6ðrÞ / r��6 hexatic : quasi-long-range order;

g6ðrÞ / expð�r=
6Þ isotropic : short-range order:

The exponent �6, that describes the spatial decay of the bond-order correlation

function, is smaller than ¼ in the hexatic phase, and is ¼ at T¼Ti, whereas 
6 is the
bond-order correlation length. Thus, investigation of the bond-order correlation

function can help to identify the phases one observes during freezing [1–3,7,13,17].
We have performed a set of simulations on a 2048	 2048 grid with noise strength

of 
*¼ 0.1, while varying the initial particle density as �0¼� 0.55,� 0.50,

� 0.45,� 0.40 and� 0.35. The early stage and late stage morphologies are shown

in Figure 3. Whereas at low initial particle densities individual crystallites nucleate

directly from the liquid, with increasing initial density, solidification happens fairly

simultaneously everywhere and results in an increasingly disordered structure with

increasing �0. Whether the latter should be viewed as highly polycrystalline matter

of extremely small grain size or an amorphous phase is not immediately clear.
The respective pair correlation functions g(r) and bond-order correlation functions

g6(r) are shown in Figures 4–5. The pair correlation functions corresponding to the

structures shown in Figures 3c–3e appear to be similar to those expected for

liquid/amorphous phases [107–109]. For comparison, we have also evaluated g(r)

for the clearly microcrystalline structure shown in Figure 3b (�0¼�0.50).

Figure 3. Snapshots of early and late stages of solidification in PFC simulations performed
with initial reduced particle densities of �0¼�0.55, �0.50, �0.45, �0.40 and �0.35.
(a–e) Early stage: The respective reduced times are: 	/D	¼ 10,000, 3000, 1500, 1000, and 700.
(f–j) Late stage: The same areas are shown at reduced time 	/D	¼ 60,000. (418	 418 fractions
of 2048	 2048 sized simulations are shown. Other simulation parameters were: r*¼�0.75
and 
*¼ 0.1. Reduced particle density maps are shown.)
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As expected, here the peaks are sharper, the second peak is split, and for r/�4 3 the
peaks are in anti-phase relative to those for Figures 3c–3e. Indeed, even to the naked
eye, the structures shown in Figures 3c–3e are considerably more disordered than the
microcrystalline structure displayed in Figure 3b. We also note that their degree of
disorder appears to be comparable to that of the experimental liquids shown in
Figures 4b and 4c of [17]. We conclude thus that, at sufficiently large particle densities,
first a disordered solid phase forms that consists of particles localised on the time scale
of the simulation. As a result of its structural properties, this highly disordered solid
phase is termed here as amorphous.We cannot, however, fully rule out that it has been
formed via copious nucleation. With increasing time, in all these simulations a
polycrystalline late stage has been achieved (see Figures 3f–3j).

The time evolution of the bond-order correlation function, we obtained for
�0¼�0.40, closely follows the behaviour seen in experiments [17], and clearly rules
out the presence of a hexatic phase (Figure 5): at no stage of freezing can one observe
that the upper envelope of g6(r) is linear with a slope of �1/4 or less, as expected for

Figure 5. Time evolution of the bond-order correlation function for �0¼�0.40 on log–log
scale. g6(r) is shown at 	/D	¼ 1000, 4000, 16,000, and 64,000. For comparison, the upper
envelope expected for the hexatic phase and the result for a single crystal are also shown.
These curves describe an amorphous to polycrystalline transition (cf. Figures 3d and 3i). Note
that the upper envelope of the g6(r) curves decay faster than expected for the hexatic phase.

Figure 4. Pair correlation function for the early stage solidification structures shown in
Figures 3b–3e.
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the hexatic phase on log–log scale. Similar results have been obtained for the other
two reduced particle densities (�0¼� 0.45 and �0.35).

Summarising, at low thermodynamic driving forces, the crystalline phase
nucleates directly from the non-equilibrium liquid (as observed in some of the
colloid experiments [17]), while at large driving forces an amorphous precursor
appears (as has been seen in other colloidal systems [18–20]). Further work is needed,
however, to clarify whether the present model is able to reproduce crystal nucleation
inside amorphous particle rafts floating in the liquid phase, as observed in [18].

3.3. Modelling of homogeneous nucleation in three dimensions

To drive the system towards solidification at the melting point, we have increased the
density of the Fe liquid until we have observed nucleation of a solid phase. In order
to achieve this on the short time scale accessible for our 3D simulations, we had to
use enormous densities: n0
 0.5125, which are evidently out of the density range
accessible experimentally and of the validity range of our approximations.
Accordingly, the present results need to be taken with reservations. Our findings
are summarised in Figures 6 and 7. For n0
 0.5125, we have seen first the nucleation
of an amorphous solid phase (see Figures 6a–6d), which then soon transformed first
into a bcc polycrystal, and later into a bcc single crystal (see Figures 6e–6h). The time
of appearance for amorphous and crystalline phases is shown as a function of initial
liquid density in Figure 7. Remarkably, we have been unable to detect any phase

Figure 6. Snapshots of two-stage crystallisation of highly compressed Fe melt (n0¼ 0.54) at
the normal pressure melting temperature as predicted by the PFC EOF model: (a–d)
transformation to amorphous solid (the images correspond to time steps 325, 350, 375 and
400); (e–h) nucleation and growth on the bcc phase (the images correspond to time steps 500,
1000, 2000 and 3500). The simulation has been performed on a rectangular grid of size
300	 300	 300. The localised particles are represented by spheres drawn around the
respective density peaks with a diameter proportional to the amplitude of the density peak
relative to the initial liquid density.
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transition for more than 106 time steps for n0¼ 0.51, while slightly further, at
n0¼ 0.5125, the amorphous phases have appeared in �2500 time steps. These results
suggest that crystal nucleation is clearly enhanced by the presence of the amorphous
precursor, and direct bcc nucleation from the liquid phase requires several orders of
magnitude longer time than via the precursor. Although the presence of an
amorphous precursor has been reported in 2D colloidal crystallisation experiments
[18–20], and it has been predicted theoretically for simple liquids [31,32], and
amorphous precursors seem to be quite general in biological crystallisation processes
[110–114], we are unaware of any evidence supporting the presence of this behaviour
in metallic systems. It is noteworthy though that with the Ercolessi–Adams
embedded atom potential for Al, an amorphous phase has been observed to form
in molecular dynamics simulations that coexists with the liquid state [115], which
suggests that nucleation of the amorphous phase might be realistic for certain types
of potentials used to model metals. The lack of supporting evidence for nucleation
via an amorphous precursor in metals and the extreme conditions we have used
warrant further investigations of freezing at ambient pressure combined with large
undercoolings. Work is underway in this direction.

3.4. Modelling of liquid ordering, heteroepitaxy and heterogeneous nucleation
in two dimensions

The introduction of a potential energy term into the free energy density representing
the patterning forces, such as those exerted by optical tweezers, leads to specific
ordering of the particles in the PFC model.

3.4.1. Liquid ordering around fixed particles

First, we model liquid ordering around particles held in fixed positions (e.g. by
optical tweezers). In the simulation, three particles are fixed into positions forming
a triangle by a suitable potential. The ordering of the liquid the PFC model predicts

Figure 7. The time of appearance of the amorphous phase (squares) and the bcc crystal
(triangles) in highly compressed Fe liquids as a function of the initial liquid density (n0) as
predicted by the PFC EOF model. The cross at n0¼ 0.51 indicates the time at which no
solidification has been yet observed.
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around the fixed particles extends to several particle diameters, and closely resembles
images from fluorescence microscopy [116] (Figure 8).

3.4.2. Heteroepitaxy

The effect of a crystalline wall on crystal growth can also be studied in the present
model. For example, using the potential V¼V1[cos(qx)þ cos(qy)] in a stripe across
the centre of the simulation window, where q¼ 2�/a0, and a0 is the lattice constant of
the square lattice, and adding an appropriate excess number density to the same
region, after a short transient period particles aligned on a square lattice appear,
which represent a square lattice substrate. Its influence on crystallisation depends on
the lattice constant (Figure 9). If a0 matches to interparticle distances of one or other
faces of the crystal, barrierless or low-barrier epitaxial growth takes place, and the

Figure 8. Patterning in experiment (a) vs. PFC simulation (b): (a) fluorescence microscopy
image of time-averaged ordering of particle density around particles of position fixed by
optical tweezers (three green points at the centre) [116]; (b) small cluster initiated by a triplet of
particles (yellow) held in position by a triangular triple-well potential term added to the free
energy density of the PFC model. (V1¼ 0.5, r*¼�0.75, 
*¼ 0.01, and �0¼�0.5; 2048	 2048
grid. Reduced particle density map is shown.) Note the striking similarity of the experimental
and simulation images.

Figure 9. Heteroepitaxy in the PFC model on structured wall represented by periodic
potential. Growth on (01) interface of a square lattice: (a–d) effect of lattice constant of
substrate (a0¼ 18, 20, 25 and 30 Dx corresponding to a0/�� 1.0, 1.11, 1.39 and 1.67).
Barrierless or low-barrier growth is observed ((a) and (d)) if the (0 1) face of the substrate is
commensurate to one of the faces of the 2D hexagonal structure. In (b) and (c), lattice
mismatch prevents such immediate growth from the surface of the substrate; here
crystallisation takes place via nucleation and growth. (Fraction of the 50a0	 50a0 simulation
box is shown. Other simulation parameters were: V1¼ 0.1, r*¼�0.75, 
*¼ 0.01, and
�0¼�0.5. Reduced particle density maps are shown.)
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choice of a0 can be used to control the orientation of the forming crystal

(cf. Figures 9a and 9d); otherwise, the crystalline phase may appear via nucleation

at the interface (see Figures 9b and 9c). Remarkably, the mechanism of epitaxial

growth depends on the particle density in the fluid phase. Below about �0��0.506,

the diffusion-controlled mode is observed (x / 	1/2, where x is the distance from the

surface of the substrate) as opposed to the diffusionless mode appearing above this

limit (x / 	). The presence of these two growth modes is well known in colloidal

systems [117–122]. A detailed study of the transition between the diffusion-controlled

and diffusionless mechanisms will be presented elsewhere [123].
The driving force dependence of the local order at fixed lattice constant of the

substrate is shown in Figure 10. Whether the barrierless growth, seen beyond

�0��0.506 in these simulations, could be associated with the surface spinodal

predicted by Models B and C specified in [62,63] needs further investigations. We

also find that, at large driving forces of crystalline aggregation, a layered structure

composed of alternating 2D hexagonal and square-structured layers forms to release

the stress from crystallising to a non-equilibrium density (see Figures 10c and 10d).

This raises the question whether the square-lattice may exist as a metastable phase

on its own in the PFC model.
Our thermodynamic computations, based on the single-mode approximation to

the particle density, indicate that indeed the square-lattice phase is metastable

from the thermodynamic viewpoint. A metastable coexistence has been predicted

between the liquid and square-lattice phases (for r*¼�0.75 the respective equilib-

rium liquid and solid densities are  e
L¼�0.5394 and  e

Sq¼�0.2952). However, its

free energy density for the square-lattice is significantly higher than for the 2D

hexagonal phase (Figure 11). A further metastable coexistence has been predicted

between the 2D hexagonal and the square-lattice phases (with equilibrium particle

densities of  e
Hex¼�0.1103 and  e

Sq¼ 0.01930), however, in a region, where the

striped phase is the stable one. Our PFC simulations are in a general agreement with

these predictions. In the presence of noise, the square-lattice seed crystallites (even

the large ones) either melted or transformed into a faulty 2D hexagonal structure in

Figure 10. Snapshots of heteroepitaxial growth taken at a fixed reduced time (	¼ 10,000D	) in
simulations performed under different supersaturations (the initial reduced particle density
increases from left to right as �0¼�0.5075, �0.505, �0.47 and �0.45). The upper right
quarter of the 900	 900 sized simulation boxes are shown. (Other simulation parameters are:
V1¼ 0.1, r*¼�0.75, and 
*¼ 0. Reduced particle density maps are shown.) Diffusion-
controlled growth has been observed for (a), and a diffusionless growth of a lower density
crystal for (b–d). Note the depletion zone ahead of the growth front in (a), the sharp change in
growth velocity as a function of �0, and that, with increasing velocity, the frequency of the
square-lattice type stacking faults increases.
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the particle density range investigated (�02 [�0.55, �0.35]). Remarkably, we have
not seen the square-lattice grow even in the absence of noise. Rather, if the square-
lattice had not melted, the 2D hexagonal phase appeared on its surface, whereas the
region occupied by the square-lattice has shrunk: the square-lattice transformed into
faulty 2D hexagonal structure starting from its surface. This suggests that, in
agreement with theoretical expectations for simple pair potentials [124], the square-
lattice is probably mechanically unstable here.

3.4.3. Heterogeneous nucleation

First, we studied crystal nucleation on a flat surface of a square-lattice substrate.
Here we use r*¼�0.25 corresponding to the relatively small anisotropy of metallic
systems as pointed out above, and a0/�� 1.39, which provides sufficient mismatch to
prevent immediate growth from the surface of the substrate. A sequence of snapshots
displaying heterogeneous crystal nucleation and late stage growth morphology is
presented in Figure 12. A remarkable feature of the simulation is the large amplitude

Figure 11. Thermodynamics of polymorphism in 2D in the PFC model at r*¼�0.75:
dimensionless free energy density vs. reduced particle density obtained using the single-mode
approximation for the stable liquid, 2D hexagonal and striped phases and for the metastable
square-lattice. (The stable coexistence regions and the respective equilibrium densities are
denoted by solid black lines and squares, while the dashed black lines and triangles stand for
the metastable coexistences and the equilibrium densities of the respective phases.)

Figure 12. Snapshots of heterogeneous nucleation and growth on the (0 1) surface of a flat
substrate of square-lattice (a0/�� 1.39). (a–d) Snapshots taken at dimensionless time steps
1000, 35,000, 80,000, and 310,000. The upper right quarter of the 900	 900 sized simulation
box is shown. (Other simulation parameters were: V1¼ 0.1, r*¼�0.25, 
*¼ 0.1, and
�0¼�0.32. Reduced particle density maps are shown.)
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of the capillary fluctuations and the frequent appearance/disappearance of small
crystalline clusters during the initial stage of solidification.

Next, we investigated the classical prediction that corners should be favourable
places for crystal nucleation [53,54]. This prediction is also shared by more advanced
models, such as the coarse-grained continuum models of heterogeneous nucleation
(phase-field and Cahn–Hilliard type models) [58–64] that cannot consider the atomic
structure of the crystal. In our study, we assume a rectangular inner corner, while we
investigate three possible structures for the substrate: (i) square-lattice with the (10)
type faces parallel with the surface of the substrate; (ii) a square lattice, however, now
rotated by 45� relative to the previous case; and (iii) a unstructured substrate
represented by a repulsive (positive) value of the external potential inside the
substrate. The results obtained at early and later stages of crystallisation are shown
in Figure 13. Contrary to the classical expectation, these corners are not favourable
sites for the nucleation of this crystal. The reason is fairly clear: whether the preferred
orientation of the hexagonal crystal is that with a (101) type face parallel or
perpendicular to the surface of the substrate, the crystallites forming on the two
perpendicular faces of the substrate have different crystallographic orientations, so
when impinging upon each other they need to form a grain boundary. The same
stands for the corner: due to the incompatibility of the symmetries of the crystal and
the corner, the nucleus that would appear in the corner shall contain energetically
costly defects. Evidently, a 60� corner of the unstructured substrate or a 2D
hexagonal crystal structure of the substrate would remove this frustration and make
the corner a favourable site for crystal nucleation.

3.5. Modelling of colloid patterning in two dimensions

In this section, we are going to address controlled self-assembly of colloid particles in
the presence of modulated substrates, where the latter will be represented by
appropriate potential energy terms in our PFC simulations.

Figure 13. Heterogeneous nucleation in rectangular inner corners (a0/�� 1.39): (a) on (01)
surfaces of a square lattice; (b) on (11) surfaces of a square lattice; (c) on an unstructured
substrate. (The upper right quarter of the 900	 900 sized simulation boxes is shown. Other
simulation parameters were: r*¼�0.25, 
*¼ 0.1, �0¼�0.32, and V1¼ 0.1 for the square-
lattice substrates, while for the unstructured substrate we have prescribed V0¼ 0.5 inside the
substrate. Reduced particle density maps are shown.) Note the frustration at the corner and
the formation of a grain boundary starting from the corner at later stages.
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First, we model colloid patterning under the influence of periodic substrates,
which can be realised via creating patches that are chemically attractive to the
colloidal particles [125]. Depending on the size of the patches single, double, triple,
etc., occupations of the patches are possible (Figure 14a), and depending on the
distance of the patches various states can be realised, as predicted by Langevin
simulations in which the patterned substrate is represented by appropriate periodic
potentials [126]. A PFC model supplemented by periodic potential is suitable for
such studies. Introducing circular potential wells arranged on a square lattice, and

varying the diameter of the attractive wells as well as their distance, we have been
able to reproduce the patterns seen in the experiments (see Figure 14b).

Next, we model colloidal self-assembly under the effect of capillary-immersion

forces occurring when capillarity at the air–liquid interface and the varying
immersion due to a grooved surface underlying the layer of colloid particles interact
with each other. Experiments of this kind have been used to produce single and
double particle chains [127] and the otherwise unfavourable square-lattice structure
[128]. The resultant of the capillary immersion forces can be expressed as [127]

F ¼ �ð2�rcÞ sin c
ð�qÞ cosðqxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ½ð�qÞ cosðqxÞ�2
p , ð16Þ

where � is the surface tension of the liquid–air interface, rc is the radius of the contact
line on the spherical colloidal particle, �c is the is the mean slope angle of the
meniscus at the contact line, � is the amplitude of the surface undulations, q¼ 2�/�,
whereas � is the wavelength of the surface undulations (ripples/grooves). Under the

conditions of the experiments [127], such forces can be well represented by a
potential of the form V¼V1 cos(qx), where V1 depends on �, �c, and rc.

Setting �¼ �/21/2, where � is the interparticle distance and varying the orientation

of the grooves relative to the crystallisation (drying) front, patterns seen in the

Figure 14. (a) Single and multiple occupation of chemically patterned periodic substrate by
colloidal particles as a function of increasing patch size [125]. (b) PFC simulations with
increasing diameter of circular attractive potential wells. Fractions of 818	 818 simulations
are shown. Other simulation parameters were: depth of circular wells V0¼�0.5, r*¼�0.75,

*¼ 0.1, and �0¼�0.75. Reduced particle density maps are shown. The ratio of the potential
well diameters relative to the single occupation case has been 1, 1.25, 1.5, 2, 2.13 and 2.5.
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experiments [128] are observed to form in the PFC simulations (Figure 15): for
grooves parallel to the front, a frustrated 2D hexagonal structure of randomly
alternating double and triple layers, separated by channels appear. When the grooves
are perpendicular to the crystallisation front, the particles align themselves on a
square lattice with the (11) orientation lying in the interface, while for a 45�

declination of the grooves the same 2D square structure forms, however, now with
the (10) face lying in the front. In these simulations, solidification has been started by
increasing the local density of the liquid in a stripe at the centre of the simulation,
which together with noise leads to the formation of two roughly planar
crystallisation fronts propagating in opposite directions.

In the case of a homogeneous initial particle density, we observe the nucleation
and growth of single and double chains (Figure 16), which in the case of wavy and
tilted potential wells lead to morphologies closely resembling experimental obser-
vations [127].

4. Conclusions

We have used a simple dynamical density functional theory to address microscopic
aspects of various solidification problems including homogeneous and heteroge-
neous nucleation, heteroepitaxy, and self-organised pattern formation in 2D

Figure 15. Fabrication of square colloidal crystals via controlled self-assembly in experiment
and PFC simulations. (a–c) Optical microscopy image on the ordering of particles due to
grooves tilted relative to the growth front (tilting angles: 0�, 90�, and 45�) [128]; (d–f) PFC
simulations of particle ordering in the presence of potential approximating the effect of
combined forces from capillarity and grooved substrate underlying the liquid surface.
(Fractions of 1100	 1100 simulations are shown. Other simulation parameters were: V1¼ 0.3,
r*¼�0.75, 
*¼ 0, and �0¼�0.495. Reduced particle density maps are shown.)
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colloidal systems in the presence of capillary immersion forces due to modulated
substrate. Our PFC simulations have shown the following:

(1) In agreement with recent experiments on 2D colloidal systems [17], at small/
medium supersaturations crystallisation takes place via direct homogeneous
nucleation of the 2D hexagonal phase and its growth, without the appearance
of the hexatic phase.

(2) At high supersaturations, 2D crystallisation happens via the appearance of
an amorphous precursor. This finding accords with recent experiments on 2D
colloidal systems [18–20].

(3) Bcc crystal nucleation from extremely compressed Fe liquids happens via an
amorphous precursor. On the time-scale of our simulations no direct bcc
nucleation has occurred from the liquid phase.

(4) Contrary to expectations from the classical nucleation theory, corners are not
necessarily favourable places of heterogeneous crystal nucleation: the
interplay of the structure of the forming crystal, and of the structure and
geometry of the substrate decides whether the corner helps or suppresses
crystal nucleation.

(5) The PFC model supplemented with appropriate potential terms represents
a powerful tool to model the dynamics of self-organised pattern formation
in the presence of modulated substrates.
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Figure 16. Patterning in experiment (a) vs. PFC simulation (b): (a) single and double particle
chains evolving due to capillary-immersion forces on the surface of a rippled substrate [127];
(b) the particle chains forming in the PFC model using a tilted an wavy version of the potential
described in the text. (Fraction of a 2400	 1200 simulation is shown. Other simulation
parameters were: V1¼ 0.05, r*¼�0.75, 
*¼ 0.1, and �0¼�0.6. Reduced particle density
map is shown.)
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