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A simple dynamical density functional theory is used to investigate freezing of an undercooled liquid in

the presence of a crystalline substrate. We find that the adsorption of the crystalline phase on the substrate,

the contact angle, and the height of the nucleation barrier are nonmonotonic functions of the lattice

constant of the substrate. We show that the free-growth-limited model of particle-induced freezing by

Greer et al. [Acta Mater. 48, 2823 (2000)] is valid for larger nanoparticles and a small anisotropy of the

interface free energy. Faceting due to the small size of the foreign particle or a high anisotropy decouples

free growth from the critical size of homogeneous nuclei.
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Nucleation is the early stage of first-order phase transi-
tions, in which fluctuations drive the system towards the
new phase. The height of the nucleation barrier is usually
reduced by heterogeneities (walls, floating particles, tem-
plates, etc.), a phenomenon termed heterogeneous nuclea-
tion [1]. The efficiency of the heterogeneities in instigating
freezing is influenced by a range of microscopic properties,
such as crystal structure, lattice mismatch, surface rough-
ness, adsorption, etc., which are often condensed into the
contact angle used in the classical theory [1] and coarse-
grained continuum models [2]. Studies relating such
microscopic and macroscopic properties are rare. Recent
experiments on colloids explored the effect of configurable
seed structures realized by optical tweezers on nucleation,
and indicate that the defect structure generated by the seed
governs the morphology of the growing crystals [3]. The
simulation methods used in addressing the interaction of
heterogeneities with the crystallizing liquid include
ab initiomolecular dynamics (AIMD),molecular dynamics
(MD), Monte Carlo (MC), and dynamical density func-
tional techniques (DDFT). A DDFT study mapped out the
effect of seed structures on crystallization in 2D [4]. MD
and MC simulations explored the interaction between a
foreign wall and a crystallizing fluid [5–10]. The unstruc-
tured wall is nearly wet by the (111) face of the hard-sphere
crystal, and the results can only be interpreted if line tension
is also taken into account [5], a result recovered within the
lattice gas model [7]. Freezing on walls patterned on the
atomic scale has been investigated for triangular and square
lattices, zigzag stripe, and rhombic surface patterns [6]. The
presence of a wall is shown to lead to ordering in the
adjacent liquid layers [8] that influences the adsorption of
crystalline molecule layers at the surface of the substrate.
Owing to reduced stress, nanoscale pits in an amorphous
wall proved to be amore efficient nucleation site than pits in
a crystalline wall [9]. Recent MD and AIMD work for the
AlTiB system indicates the formation of crystalline layers
on appropriate surfaces of the Al3Ti and TiB2 substrates

[10,11]. These phenomena, especially the effect of lattice
mismatch, are crucial from the viewpoint of the highly
successful free-growth-limited model of particle-induced
freezing by Greer and co-workers [1,12], a model in which
cylindrical particles, whose circular faces (of radius R) are
ideally wet by the crystal, remain dormant during cooling
until the radius of the homogeneous nuclei becomes smaller
thanR, and free growth sets in. The microscopic studies are
limited in time and space. Part of these limitations can be
overcome by a simple DDFT, termed the phase-field crystal
(PFC) model [13], which works on the diffusive time scale
and can handle systems containing as many as 2:4� 107

atoms [14]. Themodel has been supplementedwith suitable
potential energy terms [14,15] or boundary conditions [16]
to represent foreign walls.
Herein, we present a systematic atomic scale study

relying on the PFC model, which explores the role lattice
mismatch plays in heterogeneity-induced freezing of
undercooled liquids.
The free energy of the heterogeneous system reads as

F ¼
Z

dV

�
c

2
½��þ ð1þr2Þ2�c þ c 4

4
þ cVðrÞ

�
; (1)

where c / ð�� �ref
L Þ=�ref

L is the scaled density difference
relative to the reference liquid of particle density �ref

L , and
the parameter � > 0 is the reduced temperature related to
the bulk moduli of the liquid and the crystalline phases.
Here VðrÞ ¼ ½Vs;0 � Vs;1Sðas; rÞ�fðrÞ, where Vs;0 tunes

adsorption of crystal layers, Vs;1 is the amplitude of the

periodic part of the potential, the single-mode function
Sðas; rÞ [14] sets the structure, and as is the lattice constant
of the substrate. The size and shape of the substrate are
defined by the envelope function fðrÞ 2 ½0; 1�.
In the PFC model, heterogeneous nucleation (much like

homogeneous nucleation [17]) can be addressed following
two routes: (i) via simulations based on the equation of
motion (EOM) or (ii) by finding the relevant equilibria via
solving the Euler-Lagrange equation (ELE). Here we use
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both routes. The dimensionless ELE and EOM of the PFC

model read as �F
�c ¼ ð�F�c Þc 0

and @c
@� ¼ r2 �F

�c þ � , respec-

tively, where �F
�c denotes the functional derivative of F

with respect to c , and � is the dimensionless time. The
right-hand side of the ELE is taken at the far-field value c 0

(homogeneous liquid). In the EOM, the fluctuations are
represented by a colored Gaussian noise � of correlator
h�ðr; �Þ�ðr0; �0Þi ¼ ��r2gðjr� r0j; �Þ�ð�� �0Þ, where �
is the noise strength and gðjr� r0j; �Þ a high frequency
cutoff function [18] for wavelengths shorter than the inter-

atomic spacing (� ¼ �
ffiffiffi
6

p
). Because of the overdamped

conservative dynamics the EOM realizes, the PFC model
so defined is suitable for describing crystalline colloidal
aggregation [19,20]. These equations have been solved
numerically [21] on rectangular grids in 2D and 3D, as-
suming periodic boundary condition.

The PFC model has stability domains for the homoge-
neous liquid and triangular crystal in 2D [13], and for the
liquid and bcc, hcp, and fcc phases in 3D [14,22]. We work
in the liquid-triangular and liquid-bcc coexistence regimes;
i.e., the fcc and hcp phases are metastable (MS). The
anisotropy of the solid-liquid interface free energy in-
creases with � [15,20]: at � ¼ 0:25 	 has a small anisot-
ropy as for metals, while for � ¼ 0:5 faceted crystal-liquid
interfaces form, as in some 2D colloids [23].

First, we study heterogeneous nuclei forming in 2D on a
flat square-lattice wall of varied lattice constant using the
ELE method described in Ref. [14] (the free-energy sur-
face has many local minima allowing the ELE to map out
the nucleation barrier). The two dominant relative orienta-
tions observed in dynamic (EOM) simulations are consid-
ered [15]: ð01�1Þ or ð11�2Þ parallel with the wall. In the case
of weak anisotropy (� ¼ 0:25), the contact angle is defined
as the angle between the linear and circular parts of the
closed contour line corresponding to ðc L þ c SÞ=2 in the
coarse-grained (finite impulse response filtered [24]) par-
ticle density [see Figs. 1(a) and 1(b)]. (Subscripts S and L
stand for solid and liquid.) We observe a nonmonotonic
relationship between the contact angle and as [Fig. 1(c)].
In the case of faceted interfaces (� ¼ 0:5), the contact
angle is 60� for the orientation ð01�1Þ parallel to the wall
[Fig. 1(d)], whereas it is 90� for ð11�2Þ parallel to the wall
[Fig. 1(e)], independently of the monolayer sometimes
forming on the wall. As in Ref. [14], the work of formation
fits well to the classical WðlÞ ¼ Al2 þ Bl relationship,
where l is the linear size of the nucleus. Accordingly, the
barrier height (W�) has been defined as the maximum of
the fitted formula. W� data obtained so for the two orien-
tations are shown for 1=2< as=� � 2 in Fig. 1(f). TheW�
vs as=� relationships are nonmonotonic and have deep
minima for the matching lattice constants (as=� ¼ 1 andffiffiffi
3

p
). Except for �1:7< as=� & 2, nuclei of orientation

of ð01�1Þ parallel with the wall dominate.
Next, we investigate the free-growth-limited mechanism

in 2D on square-shaped particles at reduced temperatures

� ¼ 0:25 and 0.5. To ensure nearly perfect wetting, a
precondition of the free-growth-limited model [12], we
set as ¼ �. Two linear sizes have been used: Ls ¼ 4�
and Ls ¼ 32�. The results for Ls ¼ 32� and � ¼ 0:25
indicate that even outside of the coexistence region ad-
sorbed crystal layers form on the substrate [Fig. 2(a)],
which evolve to circular caps inside the coexistence region
[Fig. 2(b)]. When the diameter of the homogeneous
nucleus becomes smaller than Ls, free growth commences

FIG. 1 (color online). Heterogeneous crystal nucleation on a
flat wall in 2D from solving ELE. (a),(b) Typical (nonfaceted)
nuclei obtained for � ¼ 0:25, c 0 ¼ �0:341, Vs;0 ¼ 0:5, and

Vs;1 ¼ 0:5. Here as=� ¼ 1:49 and 2.0, respectively, while

the orientations are ð11�2Þ and ð01�1Þ parallel with the wall. The
intersection of the circular and linear fits (white lines) to the
contour line [gray (green) line] defines the contact angle.
(c) Contact angle versus as=� for � ¼ 0:25, c 0 ¼ �0:341.
(d),(e) Typical (faceted) nuclei obtained for � ¼ 0:5, c 0 ¼
�0:514 15, Vs;0 ¼ 0, Vs;1 ¼ 0:65, and as=� ¼ ffiffiffi

3
p

and 1.0.

Respective orientations: ð11�2Þ and ð01�1Þ parallel with the wall.
(f) Work of formation of faceted nuclei normalized by the value
for homogeneous nucleation (W�=W�

hom) vs as=� for � ¼ 0:5
and c 0 ¼ �0:514 15.
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[Fig. 2(c)]. This observation is in excellent agreement with
the free-growth-limited model [12]. For the smaller Ls,
however, a faceted crystal shape is observed, and the free-
growth limit is reached at a monatomic critical size that is
much smaller than Ls [Figs. 2(d)–2(f)]. At � ¼ 0:5, faceted
crystals form [Figs. 2(g)–2(i)]. Here, free growth takes
place when the critical size is much smaller than Ls ¼
32�. These findings indicate that the free-growth-limited
mechanism is valid as long as the foreign particles are
sufficiently large, and the free energy of the solid-liquid
interface has only a weak anisotropy.

We study the effect of lattice mismatch on crystal ad-
sorption in 2D at � ¼ 0:25 and c 0 ¼ �0:340 45. The
lattice constant of the substrate is varied between �=2
and 2�, so that it stays commensurable with Ls ¼ 32�.
The results are summarized in Fig. 3. As for the flat wall,
the amount of crystal adsorbed on the particle is a non-
monotonic function of as. At as ¼ � nearly semicircular
adsorbates appear on the faces of the particle [Fig. 3(c)],
while for slightly different as values much thinner crystal
layers are observed on both sides [Fig. 3(g)]. Further away
from as ¼ �, the adsorbed layer thickens; yet for as � 2�
crystal adsorption is forbidden.

We extend the study of the free-growth-limited model to
3D, using a cube shaped foreign particle of simple cubic

FIG. 2 (color online). Free-growth-limited crystallization in
2D. Adsorption of the crystalline phase on square-shaped foreign
particles as predicted by ELE as a function of liquid
density, reduced temperature, and size. (a)–(c) � ¼ 0:25 and
Ls ¼ 32�; c 0 ¼ �0:3418, �0:3405, and �0:3404, respec-
tively. (d)–(f) � ¼ 0:25 and Ls ¼ 4�; c 0 ¼ �0:3426,
�0:3363, and �0:3359, respectively. (g)–(i) � ¼ 0:5 and Ls ¼
32�; c 0 ¼ �0:5190, �0:4939, and �0:4929, respectively. In
all cases as=� ¼ 1, Vs;0 ¼ 0, and Vs;1 ¼ 0:65. The insets show

the respective homogeneous nuclei.

FIG. 3 (color online). Adsorption of the crystalline phase in
2D on square-shaped particles versus mismatch at �¼0:25,
c 0¼�0:34045, Vs;0¼0, and Vs;1¼0:65. (a)–(f) Equilibrium

states from solving ELE on 1024� 1024 grid; as=� ¼ 0:74,
0.89, 1.00, 1.23, 1.68, and 2.00, respectively. (g) Number of
adsorbed crystalline particles normalized by their maximum
versus lattice constant. Full symbols denote results correspond-
ing to (a)–(f).

FIG. 4 (color online). Free-growth-limited crystallization in
3D on a cube of sc structure. � ¼ 0:25 and c 0 ¼ �0:3538,
�0:3516, �0:3504, �0:3489, �0:3482, and �0:3480, respec-
tively, whereas Ls ¼ 16abcc, and abcc is the lattice constant of
the stable bcc structure. Vs;0 ¼ 0 and Vs;1 ¼ 0:65. (ELE has been

solved on a 256� 256� 256 grid.) Spheres centered on density
peaks are shown, whose size increases with the height of the
peak. Color varies with peak height, interpolating between red
(minimum height) and white (maximum height).
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(sc) structure and as coinciding with the lattice constant of
the bcc structure, known to yield bcc freezing [25]. The
results are in a qualitative agreement with the free-growth-
limited model [1] (Fig. 4).

Behavior consistent with previous EOM work [17,25] is
observed on a fcc substrate with a rectangular pit (Fig. 5):
For matching as, one finds fcc and bcc epitaxy interfered
by edge-induced frustration. At high mismatch,
amorphous-phase-mediated bcc freezing occurs, adding
to the complexity observed in MD studies [9].

In summary, we used the phase-field crystal model to
study heterogeneity-induced crystalline freezing in 2D and
3D. Our results extend previous knowledge in the following
directions: (i) The mismatch between the substrate and the
crystal influences nonmonotonically the contact angle, the
adsorption of the crystalline phase, and heterogeneous nu-
cleation; (ii) within atomistic theory, we have confirmed the
validity of the free-growth-limited model of particle-induced
freezing by Greer et al. [12] for larger nanoparticles (Ls 	
32�) and small anisotropy of the solid-liquid interface free
energy. However, for small nanoparticles (Ls � 4�) or high
anisotropies, the critical supersaturation substantially devi-
ates from the one expected from analytic theory [12]. Note
that these results are independent of the dynamics assumed.

This work is expected to instigate further experiments on
colloid systems and demonstrates the flexibility of the PFC
approach in modeling nanoscale self-assembly.
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[6] A. Esztermann and H. Löwen, J. Phys. Condens. Matter
17, S429 (2005).

[7] D. Winter, P. Virnau, and K. Binder, Phys. Rev. Lett. 103,
225703 (2009).

[8] E. B. Webb III, G. S. Grest, and D. R. Heine, Phys. Rev.
Lett. 91, 236102 (2003); S. Toxvaerd, J. Chem. Phys. 117,
10 303 (2002).

[9] J. A. van Meel, R. P. Sear, and D. Frenkel, Phys. Rev. Lett.
105, 205501 (2010).

[10] J. Wang, A. Horsfield, P. D. Lee, and P. Brommer, Phys.
Rev. B 82, 144203 (2010).

[11] J. Wang, A. Horsfield, U. Schwingenschlögl, and P. D.
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