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Abstract
We present an isothermal fluctuating nonlinear hydrodynamic theory of crystallization in
molecular liquids. A dynamic coarse-graining technique is used to derive the velocity field, a
phenomenology which allows a direct coupling between the free energy functional of the
classical density functional theory and the Navier–Stokes equation. In contrast to the
Ginzburg–Landau type amplitude theories, the dynamic response to elastic deformations is
described by parameter-free kinetic equations. Employing our approach to the free energy
functional of the phase-field crystal model, we recover the classical spectrum for the phonons
and the steady-state growth fronts. The capillary wave spectrum of the equilibrium
crystal–liquid interface is in good qualitative agreement with the molecular dynamics
simulations.

(Some figures may appear in colour only in the online journal)

1. Introduction

A general molecular scale theory of crystallization that
describes elastic and plastic deformations, including phonons,
translation/rotation of the crystallites, and crack propagation
is as yet unavailable. Practical problems, like dendrite
fragmentation or a realistic model of defect dynamics in
crystals, would require such a tool. Despite recent steps made
in this direction, further work is needed. The advanced models
developed in the past years are based on various formulations
of the classical density functional theory (DFT) [1–3], such as
the perturbative approach by Ramakrishnan and Yussouff [4],
the non-perturbative theories like the weighted and modified
weighted density approximations [5, 6], and ultimately the
fundamental measure theory [7], followed by the recently
proposed simple phase-field crystal (PFC) model [8–10].
The DFT models characterize the local state of the matter
by the time-averaged one-particle density of which the free
energy is a unique functional. The dynamic extensions of the
DFT, termed dynamic density functional theories (DDFTs),
address a great variety of crystallization related time
dependent problems [10], including grain boundary dynamics,
homogeneous and heterogeneous nucleation, dendritic and

eutectic growth, density- or solute trapping, freezing of
competing crystalline phases, etc [10].

The dynamic extension of the DFT even for sim-
ple atomic liquids is a rather demanding problem of
non-equilibrium statistical physics, posing a number of
difficulties [11, 12]. First the DDFT was worked out for
strongly non-equilibrium Brownian liquids and colloidal
systems [12–15]. Later the dynamics was extended for dense
atomic liquids [16]. The unified dynamics derived for both
molecular and colloidal fluids [17] is a recent development,
but it is valid only for small velocities (i.e. for dense liquids
and/or close to equilibrium). The first time derivative in
the dynamical equation originates from the presence of a
medium, which is responsible for the damping. In the case
of simple molecular liquids no medium is present, thus the
velocity field cannot be neglected anymore. Some of the
dynamic extensions to crystals rely on a purely diffusive
dynamics (an overdamped, conservative kinetic equation
yielding diffusive dynamics, more appropriate for colloidal
suspensions than anything else, e.g., [8–10, 18]), whereas
other models incorporate a second order time derivative in the
kinetic equation [19], which may lead to the appearance of
a second time scale resembling relaxation. A third category
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is the linearized hydrodynamic model that would capture
phonons in the crystal [20, 21]. However, only a few limited
studies of the latter kind have been performed [21], in which
the form of the associated phonon dispersion has not been
tested.

A few other attempts have recently been made to couple
fluid flow and the PFC model. Preatorius et al [22] proposed
a simple advected PFC model to describe particle motion in
a carrier fluid. A Navier–Stokes–Cahn–Hilliard model has
been coupled with the PFC model to model jamming of
phase separation by colloidal particles at the liquid–liquid
interface [23, 24]. This approach, however, also lacks the fluid
flow for the density field.

The most essential problem of combining a molecular
scale theory with hydrodynamics is that in the latter approach
inertia and dissipation are formulated on the macroscopic
level, which cannot be easily reconciled with molecular scale
modeling (e.g., the large density gradients in the microscopic
picture should not create spurious mass flow inside the
crystal). In this paper, we raise the idea that a straightforward
resolution of this problem could be obtained via scale
separation; i.e., by employing appropriately coarse-grained
quantities in the Navier–Stokes equation.

Herein, we present a nonlinear hydrodynamic theory
of crystallization in simple molecular liquids that naturally
incorporates elasticity and plasticity including phonon
dispersion and capillary waves, together with translation
and rotation of the crystal embedded into the liquid. This
is achieved by coupling the Navier–Stokes equation with
classical density functional theories of crystallization via
the coarse-grained density and velocity fields. Our paper
is structured as follows. In section 2, we present the
dynamical equations and the coupling between microscopic
and macroscopic quantities on the basis of scale separation.
To be able to address fluctuation phenomena (such as
capillary waves at the crystal–liquid interface), we start from
fluctuating nonlinear hydrodynamics (FNH), a field-theoretic
approach that couples hydrodynamic fluctuations with the
free energy [25]. We then demonstrate the translational
and rotational invariance of our model. In section 3, we
apply our approach to a simple classical DFT, the PFC
model, and specify the respective model parameters for pure
iron. Section 4 deals with the dynamic response to elastic
deformations, including compression, torsion and phonon
spectrum, followed by results for front propagation for growth
and melting, and the capillary wave spectrum. Finally, a few
technical remarks are made regarding coarse-graining applied
in this work. In section 5, we offer a few concluding remarks.

2. Model description

2.1. Dynamical equations

We present a time dependent density functional theory of
crystallization based on fluctuating nonlinear hydrodynam-
ics [26, 27]. Our starting point is a recent work of Shang
et al [25], which has successfully addressed multiphase liquid

and liquid–gas equilibrium interfaces. Considering isothermal
processes, the respective dynamical equations read as

∂ρ

∂t
+∇ · p = 0 (1)

∂p
∂t
+∇ · (p⊗ v) = ∇ · [R(ρ)+ D(v)+ S]. (2)

Here ρ is the mass and p the momentum density, and v the
velocity field. R(ρ) and D(v) are the reversible and dissipative
stress tensors, respectively, whereas S is a noise matrix
representing thermal fluctuations. The dissipative stress of a
Newtonian liquid is as follows:

D(v) = µS[(∇ ⊗ v)+ (∇ ⊗ v)T] + (µB −
2
3µS)(∇ · v), (3)

where µS and µB are the shear and bulk viscosities,
respectively. The fluctuation-dissipation theorem yields the
following covariance tensor for the noise:

〈Sr,t
ij Sr′,t′

kl 〉 = (2kBTµS) δ(r− r′)δ(t − t′)

×

[
δikδjl + δjkδil +

(
µB

µS
−

2
3

)
δijδkl

]
, (4)

where kB is Boltzmann’s constant and T the temperature. The
free energy functional of the classical DFT is anchored to the
FNH model via the fundamental equation for the reversible
stress tensor emerging from the least action principle [28],

∇ · R(ρ) = −ρ∇
δF[ρ]

δρ
, (5)

where δF[ρ]/δρ is the first functional derivative of the
Helmholtz free energy functional F[ρ] with respect to the
density.

Note that substituting the time derivative of equation (1)
into the divergence of equation (2), and using equation (5)
yields the following kinetic equation:

∂2ρ

∂t2
= ∇ ·

(
ρ∇

δF

δρ

)
+ ∇ · [∇ · D(v)−∇ · (p⊗ v)+∇ · S], (6)

which consistently recovers the undamped limit of the
dynamics proposed by Archer [17] for small velocities (v→
0) in the case of S = 0. Since in equation (6) ρ and p are the
local time-averaged microscopic one-particle and momentum
densities, respectively, the same applies for equations (1) and
(2).

2.2. Scale separation via dynamic coarse-graining

The main difficulties associated with applying the free energy
functional of a classical DFT of freezing directly in the
dynamical equations (1) and (2) are as follows. (i) The validity
limit of the Navier–Stokes equation coincides with that of
the linear dissipation assumption. According to molecular
dynamics simulations, the smallest length scale where the
Navier–Stokes equation is considered to be valid in liquids is
≈102σ0, where σ0 is the effective molecular diameter [29]. On
smaller length scales, the definition of the continuum velocity
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field breaks down, and the system shows an essentially
different behavior (in other words, the molecular resolution
must be taken into account in both space and time). (ii) In the
classical DFT of freezing, the crystal is represented by a lattice
periodic density distribution, which shows peaks at the lattice
sites. Due to the high gradients of the density field, expressing
v by p and ρ may lead to singularities in the velocity, yielding
spurious convections in the interatomic space. To prevent such
singularities while retaining the validity of the Navier–Stokes
equation, we assume that the convection is related to the
coarse-grained momentum and density fields as follows:

v(r, t) := p̂(r, t)/ρ̂(r, t), (7)

where ρ̂(r, t) and p̂(r, t) stand for the space- and time-
averaged microscopic one-particle density and momentum
fields, respectively, where the spatial averaging results
in the fields without their lattice periodic components.
Consequently, this phenomenological ‘derivation’ relies on
a two-step coarse-graining process. Note that the shortest
possible wavelength in v(r, t), on which the Navier–Stokes
equation is valid, corresponds to the thickness of the
solid–liquid interface that should be several times the
intermolecular distance, a condition not necessarily satisfied
for faceted crystal–liquid interfaces. In addition, we apply the
constant mobility approximation [18] in equation (5),

∇ · R(ρ) = −ρ0∇
δF[ρ]

δρ
, (8)

which corresponds to the trivial reversible stress tensor
R(ρ) = −ρ0(δF[ρ]/δρ)I (where I is the identity matrix). The
coarse-grained velocity can be generated by using different
lowpass filters. The properties and the effect of different filters
will be discussed in section 4.5.

Note that applying our approach to a simple
Ginzburg–Landau (GL) type free energy functional (where
the preferred density field distributions are homogeneous),
the coarse-graining process simply results in ρ̂ ≈ ρ, p̂ ≈ p
and v ≈ p/ρ (if the characteristic length of the GL model
(i.e. the interface width) is large compared to the interatomic
distance). In this case, the model reduces to the description of
Shang et al [25], but with constant mobility in the reversible
stress. (Since the GL models do not contain the elastic
properties of the crystalline phase, the reduced model can
be used only for liquid–liquid or liquid–vapor transitions.)
Finally, we also mention that the present description is limited
exclusively by the ratio of the interatomic distance and the
interface thickness: the characteristic length scale on which
the viscous dissipation acts must be large enough to retain the
validity of the Navier–Stokes equation. Molecular dynamics
investigations along the line described in [29] are needed to
clarify this limitation further.

2.3. Translational and rotational invariance

First we test our description against translational and
rotational invariance. Pure translation and/or rotation can be
expressed by the velocity field v0(r) = v0+ω×(r−r0), while
the corresponding momentum distribution reads as p(r, t) =

ρ(r, t) · v0(r). Using equation (7) the coarse-grained velocity
field is

v(r, t) =
p̂(r, t)

ρ̂(r, t)
=
ρ̂(r, t) · v0(r)
ρ̂(r, t)

≡ v0(r), (9)

where we utilized that the spectrum of v0(r) contains only a
zero-frequency component.

Consider now an equilibrium density distribution ρ0(r),
i.e. for which the first functional derivative of the free
energy functional is constant: {δF[ρ(r)]/δρ}|ρ0(r) = µ.
The functional derivative shows translational and rotational
invariance, namely: {δF[ρ(r)]/δρ}|ρ(r,t) = µ for ρ(r, t) =
ρ0[r−v0(r)·t]. Using this together with p(r, t)= ρ(r, t)·v0(r)
and v(r) = v0(r) in equations (1) and (2) yields

∂ρ(r, t)

∂t
+∇ · [ρ(r, t) · v0(r)] = 0 (10)

∂p(r, t)

∂t
+∇ · [p(r, t)⊗ v0(r)] = 0, (11)

where we used that ∇µ ≡ 0 and D{v0[(r)]} ≡ 0. Note
that equations (10) and (11) simply translate and rotate the
initial density [ρ0(r)] and momentum [p0(r) = ρ0(r) · v0(r)]
distributions.

2.4. Advantages of the model

The novel scale separation method proposed here leads
to the proper momentum equation in the long wavelength
regime, while realizing wave dynamics for small wavelengths
(the latter is responsible for the kinetics of the periodic
field, i.e., freezing and melting). The frequency regimes
are coupled via the nonlinear terms of the Navier–Stokes
equation. The main advantages of the proposed dynamics
compared to former descriptions are as follows. (i) As
a direct consequence of the scale separation, the present
formalism is independent from the particular choice of the
free energy functional, and (ii) the elastic properties of
the crystal are inherently incorporated into the classical
DFT free energy functional, while the macroscopic liquid
viscosity is coupled only to the coarse-grained velocity
field. In contrast, in the cases of hydrodynamics-coupled
Ginzburg–Landau type or phenomenological phase-field
models the elastic crystal behavior is simply replaced by
rigid body motion, which is usually achieved by applying
a phase state dependent viscosity in the dissipative term.
Unfortunately, this approximation violates both the linear
dissipation approximation and the fluctuation-dissipation
theorem at the interface.

3. Application to the phase-field crystal model

3.1. Free energy functional

We have chosen the free energy functional of a simple
classical DFT, the phase-field crystal theory (PFC) [8],
to demonstrate the capabilities of our approach. Variants
of this PFC model have been successfully used to
describe elastic interactions in the crystal [19, 30], planar
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Table 1. Model parameters taken from [37], [38] and [25], denoted by [a], [b] and [c], respectively.

C0 C2 (Å
2
) C4 (Å

4
) a b T (K) n0 (Å

−3
) m0 (amu) µ0

S (mPa s) µ0
B/µ0

S

−10.9153[a] 2.6[a] −0.1459[a] 0.6917[a] 0.0854[a] 1833[a] 0.0801[a] 55.845 5.0[b] 2[c]

crystal front growth [31], faceting and branching during
crystallization in colloidal systems [32], homogeneous [33]
and heterogeneous nucleation [34], multiple time scales
during glass formation [35], or even solute trapping [36]. (For
a review, see [10].) The free energy functional we use reads
as [37]

F

n0kBT
=

∫
dV

{
f (n)−

C2

2
(∇n)2 −

C4

2
(∇2n)2

}
, (12)

where the local free energy density is

f (n) = (1− C0)
n2

2
−

(a

2

) n3

3
+

(
b

3

)
n4

4
. (13)

Here the order parameter is the normalized mass density, n =
ρ̃ − 1, where ρ̃ = ρ/ρ0 (ρ0 = m0n0 is the reference density,
where m0 is the atomic mass and n0 the number density of the
reference liquid). The parameter C0 can be related to the bulk
modulus of the reference liquid via K0 = (1 − C0)(n0kBT),
while C2 and C4 are responsible for elasticity. Using n(r, t) :=
n̄ + δn(r, t) (where n̄ is the average and δn(r, t) � 1) in
equations (12) and (13) together with equation (5) yields the
isothermal speed of sound c in the liquid as the function of
the average density, c2

= (1 − C0 − an̄ + bn̄2)(kBT/m0),
which recovers that of the reference liquid (c0 =

√
K0/ρ0)

for n̄ = 0. From the viewpoint of the numerical simulations
it is convenient to scale the length by λ =

√
2|C4|/C2, the

free energy by kBT , the density by ρ0, and the time by τ =√
ρ0λ5/(kBT) in the dynamical equations.

3.2. Model parameters

The physical parameters used in the simulations refer to a
metallic system (a rough approximant of iron, see table 1).
With the present choice of the parameters, the PFC model
prefers a homogeneous liquid–triangular crystal equilibrium
in 2D with the following equilibrium properties: the scaled
average liquid density is ρ̃eq

L = 1.051 822, and the relative
equilibrium density gap is 2(ρ̃eq

S − ρ̃
eq
L )/(ρ̃

eq
S + ρ̃

eq
L ) =

0.1875%, where ρ̃
eq
S is the equilibrium crystal density,

whereas the scaled lattice constant is σ0 ≈ 1.001× (4π/
√

3).

4. Results and discussion

We performed illustrative simulations in two dimensions (2D)
for (i) the elastic response to compression and torsion on an
equilibrium crystalline cluster, (ii) planar crystal growth and
melting fronts (without noise), and (iii) the capillary wave
spectrum of the planar equilibrium crystal–liquid interface.
The kinetic equations were solved using a pseudo-spectral
scheme with a second order Runge–Kutta time stepping (the

grid spacing and time increment were 1x = σ0/8 and 1t =
0.025), respectively [25].

4.1. Dynamical response for elastic deformations

4.1.1. Compression and torsion of a crystalline cluster.. First,
the elastic response of a deformed 2D crystal was studied.
The simulations were performed on a 1024 × 1024 grid. The
initial condition was a circular crystal grain equilibrated with
the surrounding liquid. Next, two types of deformation were
applied on the cluster: (i) compression, by radial h, and (ii)
torsion, by tangential modification of the pattern. In case (i)
circular compression waves were observed: the average first
neighbor distance (lattice constant) in a thin ring oscillates
around its equilibrium value, which is the consequence of the
wave dynamics. A similar phenomenon could be observed in
the case of (ii), where as a response to the torsion the rings
have performed angular oscillations (see figures 1(c) and (d)).
Figure 1(d) displays the time evolution of the angle α shown
in figure 1(c) (α is the angle of the vector anchored to an
individual particle, i.e. a density maximum). Our results imply
that the inclusion of inertia establishes qualitatively correct
dynamics for elastic properties.

4.1.2. Phonon spectrum.. As a more precise analysis of the
dynamic response for elastic deformations, we measured the
phonon spectrum of the bulk crystal. In the 2d monatomic
triangular lattice two acoustic phonon branches are present:
a longitudinal and a transverse branch. Considering a crystal
orientation described by the real-space basis vector set
{[0, σ0], [±(

√
3/2)σ0,−σ0/2]} the following two dominant

phonon modes emerge from the classical (spring–mass
harmonic oscillator) model: (i) for q = [q, 0]

ωT(q) ∝
√

1− cos
[(√

3/2
)
σ0q

]
(14)

ωL(q) ∝
√

3
{
1− cos

[(√
3/2

)
σ0q

]}
, (15)

where T and L denote the transverse (u0 ⊥ q) and longitudinal
(u0 ‖ q) branches, respectively; (ii) for q = [0, q], in contrast,

ωT(q) ∝
√

3[1− cos(σ0q/2)] (16)

ωL(q) ∝
√

3− cos(σ0q/2)− 2 cos(σ0q). (17)

Taylor expanding equations (14)–(17) for small wavenumbers
gives the following linear relationships:

ω
1,2
T,L = c1,2

T,L · q, (18)

where superscripts 1 and 2 refer to the q = [q, 0] and q =
[0, q] directions, respectively, while c1

L/c
1
T = c2

L/c
2
T =
√

3 and
c1

L/c
2
L = c1

T/c
2
T = 1.
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Figure 1. Response of a crystalline cluster to deformations. (a), (c) Typical density distributions (colored maps) and coarse-grained velocity
field (arrows) in the case of compression/torsion. (b) Time evolution of the normalized average lattice constant ‖〈σ 〉‖ = 〈σ 〉/σ0 − 1 (〈σ 〉
measured inside a ring between the two concentric circles in panel (a)) in the case of compression. (d) Time evolution of the angle (relative
to the x axis) shown in panel (c) in the case of torsion. For the definition of the vector, see the text.

Figure 2. Phonon spectrum of a bulk triangular crystal for (a) the q = [q, 0] and (b) the q = [0, q] directions. Here Tp is the period and λp
the wavelength of the phonon.

As the initial condition for the numerical simulations
we used the bulk equilibrium density distribution of the
crystal ρ(r, 0) = ρeq

S (r) and a small amplitude momentum
perturbation p(r, 0) = ρeq

S (r) ·v0(r), where v0(r) = v0 sin[q ·

r] (the wavelength q was commensurable with the system
size). After a short transient time the system comes to a
coherent phonon state. Measuring the displacement field
u(ri, t) by tracking the lattice sites (where ri denotes the
equilibrium position of a density peak) gives the time
dependent phonon amplitude u0(t) = u0 sin[ω(q)t], where
u0 ‖ v0. The results are summarized in figure 2, where
the inverse frequency (1/Tp, where Tp is the period of the
phonon measured in natural units τ ) is plotted against the
inverse phonon wavelength σ0/λp (where λp is the phonon
wavelength). The linear fit 1/Tp = C(σ0/λp) resulted in the
following coefficients: CT

1 = 0.024 555, CL
1 = 0.042 227,

CT
2 = 0.024 405 and CL

2 = 0.042 286. The relative errors
of the coefficients’ ratios compared to the corresponding
theoretical ratios of coefficients c1,2

L,T are less then 0.7%, which

means an excellent agreement with the classical theory for
phonon wavelengths λp > 20σ0.

4.2. Steady front propagation

Next, the propagation of the (10) triangular planar front has
been studied during freezing and melting. The calculations
were performed on a 65 536 × 128 grid. As expected, steady
propagation of the crystal–liquid interface was observed,
which follows from the presence of the fluid flow. The front
velocity as a function of the relative supersaturation is shown
in figure 3(d).

Figures 3(b) and (c) show typical cross sections of the
coarse-grained density during crystallization and melting,
respectively. In both cases a density wave travels ahead of the
crystal–liquid front at close to the speed of sound in the liquid
and the crystal. Behind the density wave a steady convective
mass flux evolves (denoted by vL and vS in the figures),
establishing the required mass flux for freezing, or the removal

5
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Figure 3. Steady crystal growth/melting. (a) Typical density distribution of a crystal–liquid interface, (b) typical cross section of the
normalized coarse-grained density [‖ρ‖ = (ρ̂ − ρeq

L )/ρ
eq
L ] and the x component of the normalized velocity (‖v‖ = v/c0) field in the case of

freezing, and (c) the same for melting. (d) Steady front velocity as a function of the relative supersaturation ‖ρL‖.

of the excess material in the case of melting. The velocity of
the crystal–liquid front satisfies mass continuity in both cases:
(ρ̂S− ρ̂L)·vF = ρ̂L ·vL for freezing, and (ρ̂S− ρ̂L)·vF = ρ̂S ·vS
for melting.

It is worth noting that the analytical results of [40, 41]
for the steady front velocity refer to the unstable liquid that
exists beyond the linear stability line, which lies far beyond
the supersaturation regime covered by our simulations. The
assumptions made in deriving the analytical expression are
not valid in the latter regime. Unfortunately, we were unable
to get a steady-state planar front for higher supersaturations
due to a stress induced destabilization of the growth front at
large supersaturations, where the dynamically forming lattice
constant differs from the equilibrium lattice constant, which
in turn was used in setting the width of the long simulation
box. Evidently, carefully designed simulations may overcome
this difficulty, however, such investigations are left for a
future publication. We wish to stress, furthermore, that the
front velocities deduced in [40, 41] apply best probably
for describing the ‘fast’ diffusionless mode of solidification
observed close to the instability line [32, 42], where indeed
the density change upon solidification is negligible [32, 42].

4.3. Capillary wave analysis

The capillary wave spectrum of the fluctuating 2D
crystal–liquid equilibrium interface has been analyzed in the
presence of fluctuations. In order to exclude subatomic level
noise components, the noise field is colored, namely Sij(k) ≡
0 for |k| > kmax, where kmax < k0/2. Accordingly, the
numerical covariance tensor of the noise matrix corresponding
to equation (4) has the prefactor 0/(331t) [39], where
3 = (k0/kmax)(σ0/2) is the correlation length of the noise
consistently with the crystal structure, whereas the factor 0 =

(2π/1x)3/[(4π/3)k3
max] establishes the constant total power

of the noise independently from kmax. (The power spectral
density of a Gaussian white noise is constant, therefore
the total power is simply proportional to the number of
discretized wavevectors.) The simulations were performed on
a 1024× 4096 grid, with an equilibrium liquid–crystal–liquid
slab as the initial condition. Figure 4(a) shows a snapshot of
the fluctuating (11) triangular crystal–liquid interface (only
part of the simulation box is presented here). The white
curve shows the interface position h(x, t) calculated from
the lattice site positions (locations of local maxima of the
density distribution above a threshold value 5). In our
calculations 5 = 4 was chosen. On the basis of the capillary
wave theory [43] the interface stiffness can be measured by
investigating the long wavelength behavior of the capillary
wave spectrum, 〈|h(q)|2〉 = (kBT)/(q2γ̃L), where 〈·〉 denotes
time averaging. The interface stiffness reads as γ̃ = γ (θ) +
γ ′′(θ), where γ (θ) is the line free energy (two-dimensional
interfacial free energy) as a function of the orientation of the
crystal face, and γ ′′(θ) its second derivative with respect to the
orientation. L denotes the size of the box in the x direction.
Figure 4(b) shows the capillary wave spectrum of the (11)
interface, which is in excellent qualitative agreement with
the result of molecular dynamics simulations [44]. From the
long wavelength fitting log[〈|h(q)|2〉] = −2q + log(γ̃L) the
stiffness γ̃ can be determined as a function of the crystal plane
orientation. For weak anisotropies (the equilibrium crystalline
cluster is almost circular, see figure 1(a)), the anisotropic line
free energy of a triangular crystal can be approximated as
γ (θ) = γ0[1 + ε cos(6θ)]. The anisotropy parameter can be
evaluated from the simulations as ε = |(γmax−γmin)/(γmax+

γmin)|. Unfortunately, the anisotropy of the present system is
comparable to the error of fitting log(Lγ̃ ), therefore only a
rough estimate of the anisotropy parameter can be obtained.
Assuming γ̃ = γ0[1− 35ε cos(6θ)] the anisotropy parameter

6
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Figure 4. Capillary wave analysis of the (11) triangular crystal face. (a) Snapshot of the fluctuating crystal–liquid interface. The interface
position [h(x)] is denoted by the solid white line. (b) Log–log plot of the capillary wave spectrum 〈h2(q)〉 (black squares) and the long
wavelength linear fit (solid red line).

Figure 5. Effects of (a) shear viscosity (µS) and (b) bulk viscosity (µB) on the front velocity (vF) in the case of steady front propagation. A
relative supersaturation of ≈0.01 applies.

is approximated as ε ≈ |(γ̃max − γ̃min)/(γ̃max + γ̃min)|/35.
Measuring the stiffness for ten differently oriented crystal
faces resulted in ε . 0.002, which is somewhat smaller than
in the noiseless case, where a direct evaluation of the line free
energy [45] yields ≈0.0026 [46]. It is worth noting that at
the same reduced temperature the anisotropy of the bcc-liquid
system is larger by an order of magnitude [47], suggesting an
anisotropy of 1–2%, in agreement with molecular dynamics
results for metallic systems [48].

4.4. Growth versus shear- and bulk viscosity

We address here the dependence of the crystal growth rate
on the shear viscosity (µS) and the bulk viscosity (µB).
While theoretical considerations and molecular dynamics
simulations suggest that the front velocity scales with µ−1

S in
the vicinity of the melting point, a smaller negative exponent
is reported at large undercoolings [49]. Shear viscosity can
be measured with relative ease in a broad temperature range
via combining various methods, and is well known for a
range of metallic systems [50, 51]. Much less is known about
the bulk viscosity, mainly due to the complexity and the
associated uncertainty of the measurement techniques [52].
The handful of relevant experimental data for metallic systems
vary between µB/µS = 1/2 and 8 [53]. Although this is a
quite broad range, the effect on the front velocity is expected
to be small in systems with small density gaps (e.g., when the
divergence of the velocity field is moderate).

First, we investigate the dependence of front velocity on
shear viscosity. The results are summarized in figure 5(a). For

constant relative supersaturation (‖ρL‖ ≈ 0.01) we recover
the expected vF ∝ µ

−1
S relationship for µB/µS = 2.

Next, we study the effect of bulk viscosity on front
propagation in the range of µB/µ

0
B = 1/16–8 at constant

µS = µ0
S. As indicated by figure 7(b), the front velocity

is a ‘weak’ function of the bulk viscosity, (vF − v0
F)/v

0
F ∝

log(µB/µB,0), where µ0
B = 2µ0

S is the reference bulk
viscosity and v0

F the corresponding front velocity. Remarkably,
a factor of 16 in the bulk viscosity results in only a factor of
less than 2.5 in the front velocity. In addition, in real metallic
systems the dimensionless compressibility of the liquid is
smaller by a factor of 4 than the C0 used here, therefore
the respective physical density gap is less than 3% [37],
suggesting an even smaller effect of the bulk viscosity on the
steady-state front velocity.

4.5. The effect of the coarse-graining filter

Finally, we explore how the results depend on the choice
of the coarse-graining filter. Evidently, the coarse-grained
density (and momentum) must be flat in the bulk phases. The
coarse-grained fields are generated by using the following
convolution [54]:

φ̂(r, t) :=
∫

dr′{K(r− r′)φ(r′, t)}, (19)

where φ can be either the density or the momentum fields,
and K(r) is the kernel of the filter. In our calculations we used
various lowpass filters. The spectral kernel of a generalized
quasi-ideal lowpass filter reads as

K(q) = {1− tanh[(q− q0)/ξ ]}/2, (20)

7
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Figure 6. Coarse-graining of the density field. (a) Original density distribution of an equilibrium crystalline cluster (top-right quarter of the
computational domain). (b) Spectrum (magnitude of ρ̃(q)) of the full density distribution. The coarse-grained density is generated by
applying various lowpass filters with cutoff length t = 1/2 (denoted by the green arc). (c) Coarse-grained density field corresponding to
panel ‘(a)’.

Figure 7. Effect of the coarse-graining filters. (a) Cross section of the spectrum of the full density for various real-space filtering lengths
(standard deviation in real space) in the case of the Gaussian filter: s/σ0 = 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, and 3.5. (For the definition of h(t)
see the text.) (b) Cross section of the coarse-grained density for the same filtering lengths. (c) Spectral kernels of different coarse-graining
filters: the Gaussian filter for s = 2σ0 and the lowpass filter for q0 = 0.18 and δ = 0.01. (d) Comparison of the coarse-grained density for the
filters shown by panel (c). The density profiles were obtained from the cross section of the equilibrium cluster shown in figure 6. Note the
difference between the ‘y’ axis scales of panels (b) and (d), which indicates a huge error of the lowpass filter compared to all the Gaussians.

where ξ is a small parameter. Note that for ξ → 0 this filter
recovers the ideal lowpass filter, K(q) = θ(q−q0), where θ(x)
is the Heaviside function. Another possible choice can be the
Gaussian filter, for which

K(q) = exp[−(qs)2/2], (21)

where the real-space filtering length, s (i.e. the standard
deviation), emerges from symmetry considerations as follows.
The density can be approximated as

ρ(r) ≈ ρ0 + f (r)
[
1ρ +

∑
i

Ai exp(iΓir)
]
, (22)

where we have a lattice periodic function (plus a density
gap 1ρ) modulated by the slowly varying envelope function
f (r) (as illustrated in figure 6(a)), while the corresponding

coarse-grained density reads as ρ̂(r) = ρ0 + f (r)1ρ (see
figure 6(c)). The slow variation of f (r) means that its
spectrum decays relatively fast around q = 0. Because of
the discrete sum in equation (22) in the spectrum of the full
density [ρ̃(q)] the spectrum of the envelope function [f̃ (q)]
is simply repeated around every reciprocal lattice vector (see
figure 6(b)),

ρ̃(q) = ρ0 · δ(0)+1ρ f̃ (q)+
∑

i

Ai · f̃ (q− Γi), (23)

where δ(0) is the delta function. Choosing one of the first
reciprocal lattice vectors (q0) and taking the cross section
of the spectrum at q = t · q0 one can define the functions
g(t) := |f̃ (t·q0)| and h(t) := |ρ̃(t·q0)|. If g(t) is a fast decaying
function, then h(t) decays around t = 0 and t = 1 as 1ρ · f (t)

8
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and A0 · f (1 − t), respectively (as indicated by the vectors in
figure 6(b)). Therefore, the expected optimum spectral cutoff
distance for the filters is at t0 =1ρ/A0. In our case the density
gap is 1ρ ≈ 0.2, while the amplitude is A0 ≈ 1, therefore,
t0 ≈ 0.2.

Although the approximation described above might seem
to be too simple and rough, it has been verified numerically
for the Gaussian filter. We have investigated both h(t) and
the coarse-grained density in the crystal as a function of
the real-space filtering length s (standard deviation) for an
equilibrium crystalline cluster. Figure 7(a) shows h(t) for
various filtering lengths s/σ0. It can be clearly seen that the
spectrum is practically independent from s. The best choice
for s is then determined by the flatness of the coarse-grained
density in the bulk crystal and the behavior of the solid–liquid
interface (see figure 7(b)). If the filtering length is too large,
the interface broadens (e.g., for s/σ0 = 2.5, 3.0, and 3.5),
since the filter smoothes the density. In contrast, if s is
too small (e.g., for s/σ0 = 1.2, 1.4, 1.6, and 1.8), significant
periodic components appear in the bulk crystal. As indicated
by figure 7(b), an optimum choice for the real-space filtering
length can be s = 2σ0, for which the spectral kernel of the
Gaussian filter cuts off for t = q/q0 & 0.2 (see figure 7(c)).

As an alternative to the Gaussian filter, one may wish
to use a generalized quasi-ideal lowpass filter defined by
equation (20). The problem with that filter has already been
illustrated in figure 7(a). The spectrum decays exponentially
around t = 0 and 1, and there is no ‘empty’ frequency
range of finite size between them. Unfortunately, the
quasi-ideal lowpass filters are not smoothing filters, rather
they are developed to separate two distinct (non-overlapping)
frequency regimes. Therefore, the expected quality of the
coarse-grained density is much worse in the case of
these filters, which has also been verified numerically (see
figure 7(d)). Consequently, in our simulations we used a
Gaussian filter with a filtering length s = 2σ0, as indicated
above.

5. Summary

We have presented a nonlinear hydrodynamic density func-
tional theory of crystallization. Our work couples the classical
density functional theory to the Navier–Stokes equation
directly via a phenomenological coarse-graining technique
that prevents velocity singularities in the interatomic space.
The dynamical equations are fundamental and supplemented
with momentum fluctuations emerging from the fluctuation-
dissipation theorem. The main virtue of the present model is
that the elasticity of the crystal and the liquid is incorporated
consistently. This is demonstrated by illustrative simulations
including dynamic response to elastic deformations, phonon
spectrum and steady crystal growth/melting. In addition, the
capillary wave spectrum and the anisotropy of the interfacial
free energy are also in good qualitative agreement with the
results of atomistic simulations. Our work opens up the
way to address a range of microscopic phenomena, such
as homogeneous and heterogeneous nucleation, morphology
evolution, kinetic roughening, fragmentation, etc in forced
convection.
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