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Extending previous work [T. Pusztai, L. Rátkai, A. Szállás, and L. Gránásy, Phys. Rev. E 87, 032402
(2013)], we have studied the formation of eutectic dendrites in a model ternary system within the frame-
work of the phase-field theory. We have mapped out the domain in which two-phase dendritic structures
grow. With increasing pulling velocity, the following sequence of growth morphologies is observed: flat front
lamellae → eutectic colonies → eutectic dendrites → dendrites with target pattern → partitionless dendrites
→ partitionless flat front. We confirm that the two-phase and one-phase dendrites have similar forms, and
display a similar scaling of the dendrite tip radius with the interface free energy. It is also found that the
possible eutectic patterns include the target pattern, and single- and multiarm spirals, of which the thermal
fluctuations choose. The most probable number of spiral arms increases with increasing tip radius and with
decreasing kinetic anisotropy. Our numerical simulations confirm that in agreement with the assumptions of a
recent analysis of two-phase dendrites [S. Akamatsu, S. Bottin-Rousseau, G. Faivre, and E. A. Brener, Phys.
Rev. Lett. 112, 105502 (2014)], the Jackson-Hunt scaling of the eutectic wavelength with pulling velocity is
obeyed in the parameter domain explored, and that the natural eutectic wavelength is proportional to the
tip radius of the two-phase dendrites. Finally, we find that it is very difficult/virtually impossible to form
spiraling two-phase dendrites without anisotropy, an observation that seems to contradict the expectations
of Akamatsu et al.. Yet, it cannot be excluded, that in isotropic systems two-phase dendrites are rare events
difficult to observe in simulations.

PACS numbers: 68.70.+w, 81.10.Aj, 81.30.Fb

I. INTRODUCTION

A broad variety of systems show multi-arm spiral-
ing, including spiral galaxies1, banded spherulites in
polymeric systems2, biological excitable systems3,4, os-
cillating chemical reactions5,6, spiraling growth edges
on flat crystalline surfaces7, ridges in sputtered high-
temperature superconducting thin films8,9, certain semi-
conductor materials grown by molecular beam epitaxy10,
binary eutectics11,12, and helical Liesegang systems6,13,
and the recently discovered ternary eutectic dendrites
(Fig. 1)14. Although the formation mechanism of spi-
ral structures excite the fantasy of scientists for a long
time, a general explanation is not available partly due
to the diversity of the underlying processes. While the
details differ in various realizations of spiral growth, dif-
fusion and phase separation often play a role in the re-
spective models. For example, the aggregation of starv-
ing cells is controlled by propagating spiral waves of a
chemo-attractant, often yielding multiarmed spiral pat-
terns in the case of slime mold15. In binary eutectics, spi-
raling has been associated with a specific anisotropy of
the free energy of the solid-solid interface11, the presence
of screw dislocations16, or recently to fingering driven by
osmotic flow17. In contrast, the newly discovered spi-
raling ternary eutectic dendrites emerge from the inter-
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play of two-phase solidification with the Mullins-Sekerka-
type diffusional instability caused by a third component,
whose solubility differs in the solid and liquid phases14.
The complex microstructures observed in some of the
ternary alloys18 are also suspected to emerge due to the
presence of two-phase dendrites14. It is worth noting that
besides their scientific interest and pleasing view the lat-
ter class of spiraling / helical structures have been identi-
fied as possible means of creating chiral metamaterials for
optical applications via eutectic self-organization19–22.

Models of spiral growth range from wave theory23,24,

FIG. 1. Spiraling eutectic dendrites during bulk-sample direc-
tional solidification of a SCN-DC-NA ternary eutectic alloy.
Growth rates: (a) 0.28 µms−1; (b) 0.95 µms−1. The bar cor-
responds to 20 µm. (Reprinted with permission from Ref.14
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via the FitzHugh-Nagumo (FN) theory for excitable
media15 and reaction-diffusion models13,25,26 to the
Ginzburg-Landau/phase-field type models27,28. Studies
of biological excitable media, relying on the FN model,
have clarified essential features of spiral growth15: The
mechanism by which the multi-arm spirals do form is
the attraction of single spirals rotating in the same di-
rection, whereas the number of spiral arms is associated
with the ratio of the single spiral period to the refrac-
toriness of the medium. Apparently, in such systems the
multi-arm spiral structures are unstable unless the ex-
citability is sufficiently low. Some other models provide
single spiral structures exclusively27,28. A recent work
based on Cahn-Hilliard type reaction-diffusion model of
helical Liesegang systems indicate that single and multi-
ple helixes may occur and the fluctuations choose from
the possible configurations13. A similar scenario has been
outlined in a recent work of us in which ternary eutec-
tic dendrites may realize a variety of eutectic patterns
including a target pattern and multiple spiraling mo-
tifs of which thermal fluctuations of the system choose29.
In our work, we have been looking for a suitable phys-
ical model and shown that a simple ternary extension
of the standard binary phase-field theory is able to de-
scribe the formation of eutectic dendrites, offering thus
the first model that is able to capture details of such ex-
otic growth patterns. We note, furthermore, that this
is another remarkable success of the phase-field theory:
Without any specific adjustments to make spiraling eu-
tectic dendrites, a minimal and fairly standard version
of the phase-field theory of ternary solidification proved
capable of recovering these rather complex solidification
morphologies. We have shown that (a) in many respects
eutectic dendrites behave like the single-phase dendrites
(e.g., shape, tip radius vs. interface free energy, etc.); (b)
there is a multiplicity of eutectic patterns, which lead to
steady-state dendritic growth under nominally the same
conditions; these are the target pattern, and single- to
multi-arm spiraling structures; (c) it is the fluctuations
that choose from these competing growth modes; (d) the
number of spiral arms tends to increase with increasing
dendrite tip radius, however, with some stochastic scat-
tering. In a more recent analytic study, Akamatsu and
coworkers30 have addressed dendrite formation in ternary
eutectic systems. They argued that assuming (i) λ ∼ R
and (ii) λ2v = const. (the latter is the Jackson-Hunt re-
lationship of eutectic solidification31,32, where λ, R, and
v are the eutectic wavelength, the tip radius of the den-
drite, and the tip velocity, respectively), the dendrite se-
lection mechanism differs from the one seen in binary
systems suggesting that in the case of ternary spiraling
dendrites anisotropy is not neccessary for steady-state
dendritic growth. Remarkably, assumption (ii) seems to
be in contradiction with the analytic predictions by Liu
et al.33 for higher concentrations (5%) of the third com-
ponent, obtained assuming a rotational paraboloid shape
for the two-phase dendrite. However, the approach of Liu
et al. appears to contain questionable assumptions that

the lamella spacing is much smaller than the tip radius
(expected true rather in the case of eutectic colonies34),
and the neglection of the effect of curvature of the den-
drite surface on eutectic solidification. It is yet desirable
to clarify these contradictory issues.

Herein, we focus our attention to the ternary eutectic
dendrites and extend our previous phase-field study29 in
the following directions: (a) a detailed investigation of
the stochastic eutectic pattern selection mechanism; (b)
testing of scaling laws (i) and (ii); and (c) interaction of
neighboring eutectic dendrites. The structure of our pa-
per is as follows: In Section II, we give a brief description
of our model and justify the model parameters used dur-
ing the simulations. In Section III, we review details of
the performed numerical simulations, whereas in Section
IV we present our results for the formation of two-phase
dendrites, the scaling laws (i) and (ii), the pattern se-
lection mechanism, the role played by the anisotropies,
and the dendrite-dendrite interaction. Finally, we sum-
marize our results in Section V and offer a few concluding
remarks.

II. MODEL DESCRIPTION

We adopt here a simple ternary phase-field model
used in our previous study29. It can be obtained
as a straightforward generalization29,35 of the phase-
field model of binary solidification36–39, whose variants
and extensions have been used successfully for describ-
ing homogeneous40,41 and heterogeneous42–44 nucleation,
and crystal growth including dendritic38 and eutectic
freezing36,37,39, and even polycrystalline solidification
treating nucleation and growth on equal footing40,45–48.
Such models turned out to be quantitative on the
nanoscale for nucleation40,41,44, whereas qualitative re-
sults were obtained for broader interfaces38,45–48. A sim-
ilar model has been used to describe the formation of
eutectic colonies in ternary systems35.

Herein, the ternary model is solved in a dimension-
less form; accordingly, the size scale is determined by the
interface thickness chosen for redimensionalizing the re-
sults. Considering that the physical interface thickness
is about 1-2 nm, the present results refer to nano-scale
eutectic structures, expected to form at extreme under-
coolings, which can be realized by e.g., via crystallizing
amorphous alloys (see e.g.,49–51). In contrast, the exper-
iments refer to small undercoolings, where other models
may be considered more appropriate (e.g.,52–55).

The free energy functional has been obtained as a
simple generalization of the standard binary phase-field
model (see e.g. Refs.38,40):

F [φ, c] =
∫ [ ε2φ

2 (∇φ)2 + wg(φ) + (1− p(φ))fl(c)+

+p(φ)
(
fs(c) +

ε2c
2

∑3
i=1(∇ci)2

)]
dV. (1)

Here φ(r, t) ∈ [0, 1] is the phase field, which is 0 for bulk
liquid and 1 for solid, c = (c1, c2, c3) are the concen-
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FIG. 2. The free energy functions, fs,l(c), at a tempera-
ture displayed above the Gibbs simplex: (a) bulk solid; (b)
bulk liquid; (c) liquid and solid free energy functions with the
tangential plane which specifies the equilibrium solid and liq-
uid phases; (d) Yellow circles stand for the three equilibrium
phases, the c1- and c2-rich solid phases and the liquid phase.
The white circle indicates the composition of the initial liquid
typically used in the simulations.

tration fields, the quartic function g(φ) = φ2(1 − φ)2/4
ensures the double-well form of F , while function p(φ) =
φ3(10 − 15φ + 6φ2) switches on and off the free energy
densities of the solid and liquid phases. We choose ideal
solution model for the bulk liquid phase [Fig. 2(b)]:

fl(c) =

3∑
i=1

ci
[
f li + log ci

]
, (2)

where f li = 0, and the regular solution model for the solid
[Fig. 2(a)]:

fs(c) =

3∑
i=1

ci [fsi + log ci] +
1

2

∑
i,j,i 6=j

Ωijcicj . (3)

The equations of motion (EOMs) derived variationally
have the following forms for the phase field

φ̇ = ε(n)Mφ

[
ε2φ∇2φ− wg′(φ)+

+p′(φ)(fl(c)− fs(c))− p′(φ)
ε2c
2

∑3
i=1(∇ci)2,

]
(4)

and for the concentration fields

ċi =

3∑
j=1

∇ ·
[
(1− p(φ))M c

i,j

(
∇ δF
δcj

)]
, (5)

where δF/δci is the functional derivative of the free en-
ergy with respect to concentration field ci. Here the∑
i ci = 1 constraint is automatically satisfied by our

choice of 1 and −0.5 for the diagonal and off-diagonal
elements of the 3 × 3 mobility matrix, Mc. Note that
diffusion is switched off in the bulk solid. Owing to this
and the ideal solution thermodynamics assumed in the
bulk liquid, phase separation is possible in only the solid-
liquid interface layer.

In a few test cases that explore the effect of concentra-
tion fluctuations, we included a conservative (flux) noise
for the concentration fields, via adding∇Ξi to the RHS of
the respective EOMs [Eqs. (5)], where the vector Ξi(r, t)
is a random current of component i. Since local mass
conservation (

∑
i ci = 1) has to be obeyed even in the

presence of fluctuations, the sum of the divergencies of
these random currents must be zero, i.e.,

∑
i∇Ξi = 0

has to be satisfied. Local mass conservation is realized
by the construction Ξi =

∑
i 6=j ξij , where ξij represents

that part of the total current Ξi, where the flow of com-
ponent i is compensated by the back-flow of component
j as dictated by the linked term ξij(r, t) = −ξji(r, t) in
the respective expression for Ξj . When solving the dis-
cretized equations, the random currents ξij = −ξji were
realized by exchanging random amounts of components i
and j between each possible pairs of neighboring cells and
for all the i–j combinations. Random numbers of Gaus-
sian distribution and zero mean were used to determine
the amount of the components exchanged.

We have considered in this work a kinetic anisotropy of
cubic symmetry, represented by the following orientation
dependent coefficient in Eq. (4):

ε(n) = (1− 3ε4)

[
1− 4ε4

1− 3ε4

]
(n4x + n4y + n4z). (6)

Here n = ∇φ/|∇φ|, whereas parameter ε4 determines the
magnitude of anisotropy.

III. NUMERICAL SIMULATIONS

The equations of motion were solved numerically in
a dimensionless form using the finite difference method
and explicit time stepping. The simulations were per-
formed in a massively parallel manner partly on a com-
puter cluster of 928 CPU cores and on several graphics
processing unit (GPU) cards housed at the Wigner Re-
search Centre for Physics, Budapest, Hungary. In a few
cases, where extreme large simulations were required, we
used the supercomputer Hitachi Super Technical Server
SR16000 Model M1 of the Center for Computational Ma-
terials Science, at the Institute of Materials Research,
Tohoku University, Sendai, Japan.

The simulations have been carried out under condi-
tions that correspond to directional solidification. A
temperature gradient was imposed via making the free
energy of the solid dependent on position: fs,i,z̃ =
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f
(0)
s,i − z̃ (∂fs,i/∂z̃). Here z̃ is the spatial coordinate along

the direction of the pulling velocity ṽp. In order to model
the pulling of the sample, the contents of the arrays φ and
ci have been shifted by one voxel back in the z̃ direction
in each [(dx̃/dt̃)/ṽp]

th time step, while prescribing the
boundary conditions φ = 0 and c = c0 on the high T
and no-flux boundary conditions on the low T side of the
simulation box.

To make simulations that are sufficiently large in the
direction of pulling (z̃) more efficient, only Eqs. (5) have
been solved far ahead of the solidification front, where
the phase field is small (< 10−8) to be regarded as bulk
liquid. This approach allowed us to handle essentially
the whole diffusion zone ahead of the solidification front,
which then ensured that the dendrite morphology became
independent of the length of the simulation box (Nz).

As in our previous study29, the majority of our sim-
ulations has been started by including a slab of solid of
length (2/9)L̃z into the simulation box (L̃z = Nzdx̃ is the
length of the simulation box in direction z̃) with a small
hump at the center, whereas the initial composition of the
solid has been set to 〈c1〉 = 〈c2〉 = 0.455 and c3 = 0.09
[see Fig. 2(d)], realized by a random transversal (x̃ − ỹ
plane) distribution of the two solid phases of typical size
scale close to the natural wavelength of eutectic growth.
The random transversal distribution represents here the
effect of all the thermal fluctuations from the nucleation
of the eutectic grain to the starting of the simulation. We
have opted for this initial condition, because simulations
that follow the formation of the two-phase dendrites from
fluctuation-induced emergence of nuclei are prohibitively
time consuming. Evidently, this might be a crude ap-
proximation. Therefore, we tested in a few cases how
close one can get to the results obtained from this manner
if we start the solidification from a small but supercriti-
cal (larger than the critical size for nucleation) one-phase
solid sphere, while adding flux-noise to the EOMs of the
concentration fields as described in Ref.56. As will be
seen, the probabilities of formation of the individual eu-
tectic patterns obtained via these two routes are fairly
close, indicating physical consistency.

Reference conditions: These were used unless stated
otherwise. Time and spatial steps: dt̃ = 0.0025 and
dx̃ = 1.0. Grid: Nx ×Ny ×Nz = 96× 96× 612. Size of

the simulation box: L̃i = Ni · dx̃, where i = x, y, or z.
Composition: c1 = c2 = 0.455, and c3 = 0.09. Parame-

FIG. 3. Lateral view of the simulation box. Grid size: Nx ×
Ny×Nz = 96×96×612, unless stated otherwise. The dashed
line indicates the temperature distribution. The yellow and
red domains stand for the solid phases, while the liquid is
made transparent.
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FIG. 4. Compositions at which two-phase dendrites of target
or spiral patterns have been observed at ṽp = 0.2 (red dots).

ters of free energy densities: fl,i = 0; f
(0)
s,i = −0.9640

and ∂fs,i/∂z̃ = 3.677 × 10−4. At t̃ = 9000 (steady-
state), this yields fs,i = −0.9140 at the dendrite tip,
corresponding to a rather substantial relative undercool-
ing of ∆T̃r = (T̃L − T̃ )/(T̃L − T̃S) ≈ 0.78, where T̃L and

T̃S are the dimensionless liquidus and solidus temper-
atures corresponding to the conditions at the dendrite
tip. Pulling velocity: ṽp = 0.2, whereas Ω1,2 = 3.05,

Ω2,3 = Ω3,1 = 3.0. M̃φ = 1.0. Solid-liquid interface free
energy (isotropic): γ̃SL,0 = 0.0147. Kinetic anisotropy:
ε4 = 0.3. Coefficients of the square-gradient terms:
ε2φ = 0.75, ε2c = 0.4, and the free energy scale, w = 0.0469.
Unless stated otherwise no noise has been added to the
EOMs.

IV. RESULTS AND DISCUSSION

In a previous work on spiraling eutectic dendrites29,
we explored the parameter space defined by composition,
temperature gradient, pulling velocity, interfacial free en-
ergy, and kinetic anisotropy, and optimized the condi-
tions for growing two-phase steady-state dendritic struc-
tures. Herein, we extend these studies to significantly
broader parameter ranges. We examine, furthermore,
the relationship between the tip radius and the eutec-
tic wavelength, investigate the validity of Jackson-Hunt
scaling (λ2v = const.31,32), present a detailed character-
ization of the morphology of the forming eutectic struc-
tures, including the 3D geometry of the dendrite tip, and
the internal distribution of the constituent phases, and
investigate whether anisotropy is indeed not needed for
the appearance of two-phase dendrites.
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FIG. 5. Solidification morphology and pattern formation as a function of dimensionless pulling velocity ṽp. The c1 and c2-rich
solid solutions are colored red and yellow, respectively, whereas the liquid is transparent, and purple stands for c1 ≈ c2. The
front view (top row), the longitudinal section (central row) and transverse cross sections (bottom row) are displayed. With
increasing velocity, the sequence of growth morphologies is: flat front lamellae → eutectic colonies → eutectic dendrites →
dendrites with target pattern → partitionless dendrites → partitionless flat front. At extremely low and high velocities planar
fronts develop. Above ṽp ≈ 0.35 solidification takes place without partitioning. At extreme high velocities (ṽp & 0.8) full solute
trapping occurs. Remarkable is the gradual transition from the (usual) lamellae parallel to the temperature gradient seen at
low velocities to lamellae perpendicular to the temperature gradient seen at ṽp ≈ 0.3.

A. Domain of ordered two-phase dendrites

To identify the region, in which spiraling eutectic den-
drites do form in the phase diagram, we have investi-
gated the solidification morphology in the neighborhood
of the operating point [c = (0.455, 0.455, 0.09) and
ṽp = 0.2], reported in Ref.29. The respective domain

0.0 0.05 0.1 0.15 0.2 0.25 0.3
ṽp

0

10

20

30

40

λ

Jackson-Hunt fit

FIG. 6. The wavelength of eutectic solidification as a function
of pulling velocity. (Symbols of different colors denote series
of simulations with different initial patterns.) Note the rea-

sonable agreement with the Jackson-Hunt scaling, λ ∝ ṽ−1/2
p

(solid line).

is shown in Fig. 4, which indicates that spiraling eutectic
dendrites may be observed in an oval region that extends
to 0.35 < c1 < 0.56 along the line c3 = 0.09, whereas
it covers the range 0.05 < c3 < 0.17 along the line of
symmetric compositions (c1 = c2).

B. Jackson-Hunt scaling

To see whether the λ2v = const. relationship applies
indeed, we have investigated the solidification morphol-
ogy as a function of pulling velocity at the composi-
tion c = (0.455, 0.455, 0.09). For low pulling velocities
(ṽp < 0.01) one finds a planar front with a disordered
lamellar pattern (see Fig. 5). Increasing ṽp resulted in a
dendritic morphology yet with disordered lamellar pat-
tern. Around ṽp ∼ 0.2 ordered eutectic patterns form
such as the target and spiraling patterns. At higher
ṽp ≈ 0.3, solidification takes place via forming lamellae
perpendicular to the temperature gradient. Above this
velocity partitionless dendrite forms indicating that so-
lute trapping does not occur for c3 at the same level as for
the other two components. At even higher pulling veloc-
ities (ṽp ≈ 2.0) partitionless growth with a flat interface
has been observed. The results shown in Fig. 5 suggest
that the transition from flat lamellar eutectic structure
to the partitionless growth with flat interface with in-
creasing velocity happens via the following sequence: flat
lamellar front→ eutectic colonies→ eutectic dendrites→
dendrites with target pattern → partitionless dendrites
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FIG. 7. Eutectic wavelength vs. tip radius. (a) Velocity
is varied, while other parameters are fixed. Different sym-
bols stand for runs with different initial patterns (different
initializations of the random number generator). (b) Varying
the interface free energy γSL,0 or the kinetic anisotropy ε4
while keeping the velocity constant. (Here circles, triangles
and pentagons indicate the number of spiral arms observed in
simulations where γSL,0 was varied, while diamonds stand for
results from simulations where the kinetic anisotropy ε4 was
varied. In the experiments γSL,0 and ε4 are fixed, under such
conditions the two characteristic lengths are roughly propor-
tional to each other, λ ∝ Rtip, as assumed in Ref.30. However,
the tip radius can be influenced by varying either the mag-
nitude of the interfacial free energy or the kinetic anisotropy.
The dashed lines are to guide the eye.

→ partitionless flat front. Remarkably, during the tran-
sition from a flat surface with lamellae perpendicular to
it (seen at small velocities) to a flat surface at full solute
trapping (at high velocities), happens via a stage preced-
ing solute trapping, in which a nearly 1D eutectic pattern
evolves: lamellae that are perpendicular to the tempera-
ture gradient. Similar transition (lamellae parallel with
the temperature gradient to lamellae perpendicular to it)
has been observed when increasing the velocity in binary
eutectic simulations37,39,57.

Apparently, the natural length scale of eutectic solid-
ification follows the Jackson-Hunt scaling (cf. symbols
and solid line in Fig. 6), confirming thus the assumption

made in Ref.30. The other assumption of Ref.30 that the
tip radius and the eutectic wavelength are proportional
λ ∝ Rtip is satisfied likewise provided that the other pa-
rameters are kept constant [see Fig. 7(a)]. In our case,
the proportionality coefficient λ = (0.26 ± 4.5%)Rtip is
much smaller than in the experiments λ ≈ 1.33Rtip

30.
One can however, tune the the ratio via changing the
interface free energy or the kinetic anisotropy: If the
velocity is kept constant and either the interface free
energy is increased or the kinetic anisotropy decreased,
the tip radius increases, whereas the eutectic wavelength
remains roughly constant [Fig. 7(b)]. Accordingly, one
could move towards the experimental conditions via de-
creasing the interface free energy or increasing the kinetic
anisotropy. Presumably, the presence of anisotropic in-
terface free energy could also be used to tune λ/Rtip,
however, its investigation is left for the future.

FIG. 8. Two-phase two-armed spiraling dendrite grown under
the reference conditions defined in Section III: (a) spiraling
motif on the surface; (b) the helical structure formed by one
of the solid phases, (c) contour lines showing the transverse
sections at 10dx̃ distances; (d) longitudinal section (dots), the
best fit parabola (dashed), and the curve z̃ = z̃max−|x̃|ν fitted
to it (solid line); (e) maximum of c3 at the tip vs time.
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C. Dendrite morphology

A typical two-phase dendrite is shown in Figs. 8(a)
and 8(b). It has a rounded square-like transverse section
in the x̃ − ỹ plane [Fig. 8(c)]; whereas in the fin direc-
tions (e.g., x̃ − z̃), the longitudinal profile can be fitted
reasonably well by z̃ = z̃max − |x̃|ν , where z̃max is the
tip position, x̃ is the distance from the axis of the den-
drite, and ν is ∼ 1.58 ± 0.05 [Fig. 8(d)]. This exponent
is somewhat lower than ν = 5/3 predicted theoretically
for single-phase dendrites58, or the ν = 1.67 obtained ex-
perimentally for xenon dendrites59–61. (In our work, the
perimeter of the dendrite has been defined as the contour
line φ = 0.5.) The quasi steady growth form (not a true
steady-state as the eutectic pattern rotates in the coor-
dinate system moving with the dendrite tip) has been
established after a transient characterized by decaying
oscillations of the tip-radius, tip-temperature, and the
maximum of c3 at the tip, as shown in Fig. 8(e). These
findings are in a reasonable agreement with a detailed
characterization of tip shapes of single-phase dendrites
by phase-field simulations62, which indicates that there
is a crossover between a corrected paraboloid valid close
to the tip and the xenon-like behavior on the tail; there-
fore, the results depend (here too) somewhat on the range
of distances one choses to fit the shape.

To see how far the two-phase dendrites follow the be-
havior of single-phase dendrites, we have varied the mag-
nitude of the solid-liquid interface free energy (γ̃SL) via
changing the free energy of the single component solid-
liquid interface (γ̃SL,0). After the dendrite reached its
quasi steady-state, we evaluated and averaged the tip ra-
dius in the fin directions (R̃tip). The results are summa-

rized in Fig. 9. It was found that R̃tip ∝ γ̃0.50±0.01SL,0 , which

is very close to the theoretical relationship R̃tip ∝ γ̃
1/2
SL

derived for single-phase dendrites (see e.g.,63 or64. It
probably indicates that the chemical contribution is neg-
ligible to the interfacial free energy γ̃SL. We should also
call attention to the fact that the shape of the dendrite
(and the tip radius) is independent from the two-phase
pattern forming on the surface of the dendrite: The tar-
get pattern, and single- and multiple spiraling motifs ap-
pear to coexist under the same conditions (for further
details see Sub-section IV.D below), yet the probability
of finding a larger number of Narm increases with increas-
ing tip radius.

Another way to influence the shape of the dendrites
is to change the kinetic anisotropy (ε4). The results
are shown in Fig. 10(a): decreasing anisotropy yields an
increasing tip radius, a change apparently initiating a
larger number of the spiral arms. The variation of the ki-
netic anisotropy influences the shape of the cross-section
in the direction of the fins. The exponent ν describing
the shape of the dendrite tip changes from ∼ 1.5± 0.1 to
∼ 2.1 ± 0.1 with decreasing anisotropy [see Fig. 10(b)];
i.e., it varies roughly between the experimental value for
xenon (1.67) and the rotational paraboloid (2.0) expected
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FIG. 9. Tip radius vs. solid-liquid interface energy. Results
obtained with the same initialization but at different γ̃SL,0)
values are depicted by different empty symbols indicating the
actual eutectic pattern. In contrast, the black symbols stand
for 20 additional simulations, which were performed under the
same condition as the underlying empty ones, except that the
initial random spatial distribution of the solid phases was dif-
ferent (achieved by usig different initializations for the random
number generator). These simulations realize various eutectic
patterns, yet they fall on the same master curve, indicating
that the shape of the dendrite is essentially independent of
the eutectic pattern.

for isotropic case. This is combined with a change of the
shape of transverse section from a square of rounded cor-
ners to a circle. Apparently, there appears to be some
sort of a correlation between the tip radius and the num-
ber of spiral arms: the probability of having larger num-
ber of spiral arms increases with increasing tip radius.

D. Eutectic patterns

Next, we investigate the formation of two-phase pat-
terns on the surface of eutectic dendrites. As reported
previously29 they include target-, single- and multi-arm
spiraling motifs (Fig. 11). A closer inspection of the tip
region reveals that several modes of pattern formation
are possible.

The target pattern appears via alternating nucleation
of the two solid phases on top of each other [Fig. 11(a)],
confining the occurrence of this mode to larger undercool-
ings. However, no nucleation is needed for the formation
of single- and double spirals, in which the eutectic pat-
tern originates from alternative occupation of the tip re-
gion by the two solid solution phases. In the latter cases
this happens so that the α and β phases remain spatially
continuous: It appears that the alternating occupation
of the tip region by the two phases may happen with-
out nucleation. Having a growing α region at the tip,
component B piles up ahead of the tip until fast growth
initiated by the previously formed β phase leads to the
formation a β domain at the tip, which is thus connected



8

0.0 0.1 0.2 0.3 0.4
ε4

5

10

15

20

25

30

R̃
ti

p

(a) Narm
0
2
4
5
6
7
10

0.0 0.1 0.2 0.3 0.4
ε4

1.4

1.6

1.8

2.0

2.2

ν

(b)

FIG. 10. The effect of kinetic anisotropy on the shape of the
two-phase dendrite. (a) Tip radius vs. kinetic anisotropy at
γ̃SL,0 = 0.0295; (b) Exponent ν vs. kinetic anisotropy. (ν has
been obtained by fitting the expression z̃ = z̃max−|x̃|ν to the
longitudinal cross section of the dendrite, where z̃max is the
tip position, x̃ is the distance from the axis of the dendrite.)

to the rest of the β phase. This is followed by the the
same process, but now for the α phase. Since in this way
the formation of spiral arms (single or multiple) does not
need nucleation, these mechanisms can prevail at small
undercoolings. The growth modes with larger number of
spirals (Narm ≥ 3) become increasingly more complex,
still displaying alternating phase appearance at the tip.
Owing to the complexity of the process, it is difficult to
decide whether nucleation plays a role here or not. The
larger is the number of spiraling arms, Narm, the more
disordered is the tip region. As a result, larger numbers
of point- and line defects travel down on the surface of
the dendrite. This is especially so for the simulations
performed with flux noise for the concentration fields.

The internal structure of eutectic dendrites with the
target pattern, the single-, triple-, and five-arm spiral-
ing modes are presented in Fig. 12. Apart from period-
ically occurring defect-rich regions, the target pattern is
composed of conical domains of the two phases, where
the conical domains of the same phase are not connected
spatially (i.e., alternating nucleation of the two phases
is needed to create them). In contrast, the single- and
multiple spiraling patterns observed on the surface are
realized by single- or multiple helical structures forming

FIG. 11. Eutectic patterns observed under nominally the
same conditions (reference conditions as specified in Section
III): (a) Target and, (b) single- and (c)-(f) multiarm spiral
motifs. They differ in only the initialization of the random
number generator used in creating the initial random eutectic
pattern.

in the volume. Owing to obvious geometrical constraints,
the steepness of the spirals on the surface increases with
the number of spiral arms. Remarkably, the longitudi-
nal sections of the two-phase dendrites are fairly similar
for all these modes, although weak systematic differences
can be observed [Fig. 12(e)]. More characteristic are the
front views and the transverse sections: The individual
eutectic growth modes (number of spirals) can clearly be
distinguished [see Fig. 12(a)-(d)]. It has been observed
that in the appropriate parameter domain, the spiraling
two-phase dendrites are quite robust. It is worth noting
that in the experiments performed at low undercoolings
the single-spiral mode has been exclusively observed14.
The multiple spiral arms seen in our simulations probably
follow from the large relative undercooling we applied.

Although the number of spiraling arms (Narm) tends
to increase with increasing solid-liquid interfacial free en-
ergy (Fig. 9), which in turn is reflected in increasing tip
radius, the steady-state pattern depends also on the ini-
tial random distribution of the two solid phases repre-
senting the cumulative effect of the preceding composi-
tional fluctuations: Different steady-state patterns were
obtained starting from different (random) initial patterns
(see Fig. 13). For example at γ̃SL,0 = 0.059, these pat-
terns include the target pattern together with single- to
fivefold spirals, which indicates the multiplicity of the
possible steady-state solutions for the same physical con-
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FIG. 12. Dendrite cross-sections. (a)-(c): one phase x − y
plane frontal view, the box cut at z = 3, 50 and 100, respec-
tively, perpendicular to z axis. The eutectic structures are
connected inside the dendrite. (d) Helical structure formed
by one of the phases. The cut surfaces were colored with blue
for better contrast. (e) y − z plane cross-section.

ditions of which the random initialization chooses.

This stochastic behavior is characterized by a peaked
probability distribution (see central and bottom rows in
Fig. 13), which shows increasing number of spiral arms
with increasing solid-liquid interfacial free energy (and
therefore tip radius).

In order to check the validity of the assumption that
such random initialization can reasonably represent the
effect of compositional fluctuations, we have performed
20 simulations starting from a single-phase crystal seed
while adding flux noise to the EOMs for the concentra-
tion fields as in Ref.56. These simulations differed in only
the initialization of the random number generator. Such
simulations are rather time consuming since growth from
the seed to the steady-state dendrite has to be covered,
and the adding of flux noise also slows down the simula-
tion process. The corresponding probability distribution
is compared to the distribution obtained from computa-
tions with random initial two-phase patterns in Fig. 14.
Considering the scattering of the results due the rela-
tively small number of simulations limited by the avail-
able computational power, a reasonable agreement can be
seen between the two types of probability distributions.

Apparently, in our case the thermal fluctuations decide
which steady-state solutions are accessible for the system
for a given set of operating parameters. These features
closely resemble the behavior reported for Liesegang pat-
terns, where the fluctuations determine, which of the
competing modes (rings, single-, double-, triple- and mul-
tiple helices, or disordered patterns) is realized6,13. These
findings raise the possibility that stochastic pattern se-
lection is universal for certain multiarm spiral systems,
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FIG. 13. Pattern selection for two-phase dendrites: Top:
Number of spiral arms vs. tip radius. Empty (green) cir-
cles: results from random initial eutectic patterns at ε4 = 0.3
(180 simulations). Blue diamonds: same initialization, but
ε4 varies between 0.3 and 0.05. Red squares: the most likely
eutectic patterns from 20 random initializations (evaluated
from the respective 20 empty circles). Bottom: Probability
distributions (histograms) for steady-state eutectic patterns
obtained from simulations started from 20 different random
initial eutectic patterns.

in which diffusion plays a decisive role. Further work is
needed, however, to clarify this issue.

E. Is anisotropy needed for eutectic dendrites?

One of the most interesting implications of the work
of Akamatsu et al.30 is that unlike in the case of single-
phase dendrites, where the presence of anisotropy is a
precondition of dendritic growth65–72, it is expected that
in the case of spiraling ternary eutectic dendrites den-
dritic growth is possible without anisotropy. In order
to clarify this issue, we have performed simulations for
ε4 = 0. To minimize finite size effects that, in principle,
might contribute to the realization of the two-phase den-
drites, we have made large cross-section simulations (on
512×512×200, 380×380×511, and 256×256×800 grids)
at the CCMS, IMR, Tohoku University. These simula-
tions were started from 25 to 100 randomly positioned
single-phase seeds. Performing the simulation without
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FIG. 14. Probability distributions (histograms) for the ac-
cessible eutectic patterns differing in the number of spiral
arms obtained on the basis of 20 simulations. Red: started
from random initial eutectic patterns without noise. Yellow:
started from a single-phase seed while applying flux noise in
the EOMs for the concentration fields. The individual runs
differed in the initialization of the random number generator.
Note the similarity of the results obtained with and without
flux noise for the concentration fields.

anisotropy at vp = 0.1, the growing eutectic particles
impinge upon each other, and after a transient period
of frustrated eutectic patterns, the solid-liquid interface
forms a 3D disordered cellular morphology with dynami-
cally appearing and disappearing tips and ridges of rather
flat end, covered by a disordered lamellar eutectic pattern
with lamellae perpendicular to the solid-liquid interface
(Fig. 15); patterns well known as eutectic colonies seen in
ternary systems experimentally34 and theoretically35,75.
The effect of pulling velocity and anisotropy are illus-
trated in Fig. 16. The growth forms in the isotropic sys-
tems are shown in Figs. 16(a) and (b). In both cases
dynamically changing cellular structures are observed,
however, for the larger velocity the ”lamellae” are close
to perpendicular to the temperature gradient, indicat-
ing a nearly 1D eutectic growth expected at extreme
high velocities76; a mechanism possibly emerging from
the fact that at large undercoolings the applied model
has a spinodal mechanism to form the solid phases upon
each other. While in case (b) local spiraling may appear
temporarily at the tips, well developed steady-state spi-
raling dendrites cannot be seen. In these isotropic cases,
the larger flat tips tend to undergo a tip-splitting/tip
elimination phenomenon akin to the dynamic tip split-
ting and cell elimination process shown by quantitative
phase-field modeling of cellular growth in binary alloys
of low anisotropy73,74. The respective simulations per-
formed with kinetic anisotropy of ε4 = 0.3 are displayed
in Figs. 16 (c) and (d). While for the smaller velocity
a dynamically changing cellular structure is observed, at
the higher velocity [Fig. 16(d)], the peaks are far more
regular than in the other cases and converge to a sta-
ble dendritic configuration. Also, the spiraling eutec-

tic pattern is considerably more definite than without
anisotropy [cf. Figs. 16(a), (b), and (c) to Fig. 16(d)].
Note that these results, do not rule out the possibility
that in the absence of anisotropy spiraling steady-state
eutectic dendrites occur as excessively rare events. Large
scale computations are needed to clarify this issue fur-
ther.

V. SUMMARY

We have investigated the formation of ternary eutec-
tic dendrites within the phase-field theory. It has been
shown that a minimal ternary phase-field model of eu-
tectic solidification suffices for reproducing the spiraling
eutectic dendrites. We have mapped the domain of the
Gibbs simplex, in which eutectic dendrites of ordered pat-
terns (spiraling or target) appear. Increasing the pulling
velocity, we see the following sequence of transitions be-
tween morphologies/patterns: flat front lamellae → eu-
tectic colonies → eutectic dendrites → dendrites with
target pattern → partitionless dendrites (due to solute
trapping for components A and B, but not for C) → flat
partitionless solid (due to full solute trapping). We have
confirmed the assumptions of Akamatsu et al.30 that (i)
the Jackson-Hunt scaling is followed by the spiraling eu-
tectic pattern; and (ii) that the eutectic wavelength and
the tip radius of the dendrite are proportional and of
comparable magnitude. The geometrical shape of the
eutectic dendrites and the tip radius behave analogously
to their single-phase counterparts. Apparently, the un-
derlying eutectic pattern has little influence on the shape
of the dendrite. A number of quasi steady-state eutectic
patterns have been observed under nominally the same
conditions, including the target pattern, and single to
multiple spirals, of which the fluctuations choose. This
stochastic behavior resembles to that of helical Liesegang
systems13, raising the possibility of a universality class
for systems displaying spiraling under diffusion control.
It remains to be seen, however, whether this stochastic
behavior is indeed general. In spiraling dendrites the α
(and also the β) phase domains are continuous through-
out the solidified regions. It appears that the number of
the spiral arms increases with increasing tip radius. The
expectation that no anisotropy is needed for the forma-
tion of two-phase dendrites30 has not been born out by
our simulations: Without anisotropy, the emerging cellu-
lar structure does not display regular steady-state spiral-
ing. It cannot be excluded, however, that in the isotropic
systems spiraling eutectic dendrites are rare events that
cannot be easily captured by simulations.
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022141 (2013).

7C. Klemenz, J. Cryst. Growth 187 221 (1998).
8M. Hawley, I. D. Raistrick, J. G. Beery, and R. J. Houlton, Sci-
ence 251, 1587 (1991).

9C. Gerber, D. Anselmatti, J. G. Bednorz, J. Mannhart, and D.
G. Schlom, Nature (London) 350, 279 (1991).

10G. Springholz, A. Y. Ueta, N. Frank, and G. Bauer, Appl. Phys.
Lett. 69, 2822 (1996).

11R. L. Fullman and D. L. Wood, Acta Metall. 2, 188 (1954).
12H. Y. Liu and H. Jones, Acta Metall. Mater. 40, 229 (1992).
13S. Thomas, I. Lagzi, F. Molnár, and Z. Rácz, Phys. Rev. Lett.
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