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1. ABSTRACT 

 
 A multiphase-field theory is presented that describes interface driven multi-domain 
dynamics. The free energy functional and the dynamic equations are constructed on the basis 
of criteria of mathematical and physical consistency. First, it is demonstrated that the most 
widely used multiphase theories are physically inconsistent, therefore, a new theory has to be 
developed. Combining elements of the investigated models with a new multivariate 
generalization of the free energy surface results in a general multiphase / multi-component 
theory, which keeps the variational formalism, reduces / extends naturally on the level of both 
the free energy functional and the dynamic equations, utilizes arbitrary pairwise equilibrium 
interfacial properties, features equilibrium ≡ stationary equivalency, and avoids the 
appearance of spurious phases. 
 

2. INTRODUCTION 

 Despite advances in atomic scale continuum modeling of crystalline solidification, 
phase-field methods based on the multiphase-field (MPF) concept remain the method of 
choice, when addressing complex multiphase problems. Therefore, it is desirable to compare 
these models, and identify possible advantages / disadvantages they have relative to each 
other, to see whether a more general formulation unifying the advantageous features can be 
constructed.  
 In attempting to develop a consistent MPF description, the criteria of consistency are 
formulated first. These are: (i) The multiphase-field descriptions view the employed fields 

𝑢𝑖(𝒓, 𝑡) as local and temporal (mass/volume) fractions, prescribing thus ∑ 𝑢𝑖(𝒓, 𝑡) = 1𝑁
𝑖=1 . (ii) 

The physical results should be independent of the labeling of the variables. (iii) The solution of 
the dynamic equations should evolve towards the equilibrium solution, which minimizes the 
free energy functional. (iv) The free energy of the system should decrease monotonically with 
time. (v) It should be possible to recover the respective models from each other, when adding 
or removing a new phase / component / grain. (vi.a) The two-phase planar interfaces should 
represent a (stable) equilibrium, and should be free of additional phases. (vi.b) The dynamic 
extension of this requirement reads as follows: if a phase is not present, it should not appear 
deterministically at any time. (vii) Finally, the model should allow the choice of independent 
interfacial properties and the kinetic coefficients for the individual phase pairs. 
 
 
3. ANALYSIS OF PREVIOUS MULTIPHASE DESCRIPTIONS 

 
 While most of the criteria of Section 2 formulate natural / self-evident requirements, 
some of them were neglected, when developing previous MPF models, which might result in 
physical inconsistencies / numerical difficulties. Therefore, we analyzed these models against 
all the consistency criteria listed in Section 2 (the results of the analysis are summarized in 
Table I). It has been found, that none of the MPF models investigated here satisfy all the 
consistency criteria specified above. 
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Table I. Properties of different multiphase-field models from the viewpoint of the criteria 
defined in Section 2. 
 

model \ criterion i ii Iii iv v vi.a vi.b vii 

Steinbach et al. x x     x x 

Steinbach / Pezzola x x     x x 

Nestler / Wheeler x x     x x 

Kim et al. x x  x x  x x 

Bollada / Jimack/Mullis x x  x x  x x 

Ankit et al. x x x x    x 

Folch / Plapp x x x x  x x  
 

 

4. CONSISTENT MULTIPHASE FORMALISM 
 

 We derived a multiphase description that satisfies criteria (i) to (vii). The general 
dynamic equations read as 

−
𝜕𝑢𝑖

𝜕𝑡
= ∑ 𝛼𝑖𝑗 (

𝛿𝐹

𝛿𝑢𝑖
−

𝛿𝐹

𝛿𝑢𝑗
) ,

𝑗≠𝑖

 

where 𝛿𝐹/𝛿𝑢𝑖 is the functional derivative of the free energy functional with respect to  𝑢𝑖(𝒓, 𝑡), 

while the mobility matrix 𝐿𝑖𝑖: = ∑ 𝛼𝑖𝑗𝑗≠𝑖 , 𝐿𝑖𝑗: = −𝛼𝑖𝑗 must be positive semi-definite. From the no 

labeling condition 𝛼𝑖𝑗 = 𝛼𝑗𝑖 also follows, and we propose the field-dependent mobilities 𝛼𝑖𝑗 =

𝛼𝑖𝑗
0 |

𝑢𝑖

1−𝑢𝑖
| |

𝑢𝑗

1−𝑢𝑗
|, where 𝛼𝑖𝑗

0  is a positive constant. The interface contribution of the free energy 

functional reads 

𝐹 = ∫ 𝑑𝑉 {
𝜀2(𝒖, ∇𝒖)

2
∑(∇𝑢𝑖)2

𝑁

𝑖=1

+ 𝑤(𝒖)𝑔(𝒖) + 𝐴3𝑓3(𝒖)} . 

The coefficients 𝜀2(𝒖, ∇𝒖) and 𝑤(𝒖) are multivariate polynomials constructed following 

Kazaryan: 

𝜀2(𝒖, ∇𝒖) =
∑ ∑ 𝜀𝑖𝑗

2 (𝐧𝑖𝑗)𝑢𝑖
2𝑢𝑗

2𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1

∑ ∑ 𝑢𝑖
2𝑢𝑗

2𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1

 ;         𝑤(𝒖) =
∑ ∑ 𝑤𝑖𝑗𝑢𝑖

2𝑢𝑗
2𝑁

𝑗=𝑖+1
𝑁−1
𝑖=1

∑ ∑ 𝑢𝑖
2𝑢𝑗

2𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1

 , 

where 𝜀𝑖𝑗
2 (𝐧𝑖𝑗) = 𝜀𝑖𝑗,0

2 ℎ𝑖𝑗(𝐧𝑖𝑗) contains the anisotropy of the (i,j) interface via the anisotropy 

function ℎ𝑖𝑗(𝐧𝑖𝑗), where 𝐧𝑖𝑗: =
∇𝑢𝑖−∇𝑢𝑗

|∇𝑢𝑖−∇𝑢𝑗|
. Note that the pairwise interfacial properties are defined 

independently by 𝜀𝑖𝑗,0
2  and 𝑤𝑖𝑗. Furthermore, the free energy landscape is based on the function 

𝑔(𝒖) =
1

12
+ ∑ (

𝑢𝑖
4

4
−

𝑢𝑖
3

3
)

𝑁

𝑖=1

+
1

2
∑ ∑ 𝑢𝑖

2𝑢𝑗
2

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 . 

It is important to mention that the natural extensions of the two-phase planar interfaces 𝑢𝑖(𝑥) =

1 − 𝑢𝑗(𝑥) = [1 + tanh (𝑥/𝛿𝑖𝑗)]/2, 𝑢𝑘(𝑥) = 0 are always equilibrium solutions of the N-phase 

model, while their stability can be established by choosing a suitable amplitude 𝐴3 for the triplet 

term 

𝑓3(𝒖) = ∑ ∑ ∑ |𝑢𝑖||𝑢𝑗|
𝑁

𝑘=𝑗+1

𝑁−1

𝑗=𝑖+1

𝑁−2

𝑖=1
|𝑢𝑘| . 

5. RESULTS 
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5.1. Validation of the model 

 
 We tested the present model extensively against criteria (i)-(vii) defined in Section 2.  
We found that all these criteria are satisfied (for details, see Ref. [1]). For example, Fig 1 shows 
that, even if anisotropy is combined with asymmetric pairwise interface thicknesses and 
interfacial free energies, no recognizable amount of the third phase appears at the (otherwise 
curved) equilibrium interfaces. 
 

 

 
 
Fig 1. Equilibrium in a 4-phase system (for conserved fields). The panels show the individual 
fields, indicating no spurious phases at the two-phase interfaces. In the initial condition phase 
4 was set to 0, and, due to the special choice of the mobility matrix, it never appears. 
 
 
5.2. Grain coarsening 

 
 We’ve used our model to address the grain coarsening process. Here the fields 
represent different crystallographic orientations. We’ve found a limiting grain size distribution 
(LGSD) that appears better than the results from previous MPF models (see Fig 2). While the 
LGSD fits the experimental data well for large sizes, there are differences for small sizes. A 
possible reason for this could be that some sort of a microscopic mechanism, which 
accelerates the evolution of small grains (e.g., grain rotation), is yet missing from the model. 
 

 
 
Fig 2. Limiting grain size distribution during grain coarsening. The simulation data (blue bars) 
fit well the experimental values (solid line) on large sizes. For comparison, results of previous 
multiphase descriptions are also displayed (triangles and circles). 
  
5.3. Multicomponent Cahn-Hilliard liquid 
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To address phase-separation in multicomponent liquids, we start from the Navier-Stokes 
equation, the equation of motion for the velocity field 𝒗(𝒓, 𝑡):  

𝜌
𝑑𝒗

𝑑𝑡
= ∇ ∙ (𝑹 + 𝑫) , 

Here 𝜌 is the (constant) density of the system, while 𝑹 and 𝑫 are the reversible and dissipative 
stresses, respectively (for details, see Ref. [2]). Since the fields are now associated with the 
local mass fractions, conserved dynamics must be set up for them: 

𝑑𝑢𝑖

𝑑𝑡
= ∇ ∙ [∑ 𝛼𝑖𝑗 (∇

𝛿𝐹

𝛿𝑢𝑖
− ∇

𝛿𝐹

𝛿𝑢𝑗
)

𝑗≠𝑖

]  , 

where 
𝑑𝑢𝑖

𝑑𝑡
=

𝜕𝑢𝑖

𝜕𝑡
+ 𝒗 ∙ ∇𝑢𝑖 is the material derivative. The multiphase model creates equilibrium 

planar binary interfaces without the appearance of a third phase, while the contact angle 
measurements resulted in less than 1.5% relative error compared to the theoretical values 
(see Fig 3). The time dependence of the multicomponent system has also been studied. As it 
is shown in Fig 4, asymmetric interfacial data, diffusion constants and viscosities lead to the 
formation of patterns known in microfluidics, while the third phases appeared dynamically 
indeed tend to vanish yielding eventually binary interfaces. Deeper understanding of the 
underlying microscopic phenomena may offer new routes for designing novel materials, and 
generate knowledge that might play a crucial role in various fields ranging from advanced drug 
delivery to combined crude oil recovery / CO2 storage. 
 

  
 
Fig 3. Equilibrium trijunction in a slightly asymmetric ternary system. Besides the individual 

fields (panels a-c) the ui = 1/2 isolines are also presented (a magnification of the trijunction’s 
small vicinity is shown in panel d). 
 

 
 

Fig 4. Phase separation in a strongly asymmetric 4-component incompressible Cahn-Hilliard 
liquid. Snapshots of the simulation are shown. 
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