Grain coarsening in two-dimensional phase-field models with an orientation field
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In the literature, contradictory results have been published regarding the form of the limiting
(long-time) grain size distribution (LGSD) that characterizes the late stage grain coarsening in
two-dimensional and quasi-two-dimensional polycrystalline systems. While experiments and the
phase-field crystal (PFC) model (a simple dynamical density functional theory) indicate a lognormal
distribution, other works including theoretical studies based on conventional phase-field simulations
that rely on coarse grained fields, like the multi-phase-field (MPF) and orientation field (OF) models,
yield significantly different distributions. In a recent work, we have shown that the coarse grained
phase-field models (whether MPF or OF) yield very similar limiting size distributions that seem
to differ from the theoretical predictions. Herein, we revisit this problem, and demonstrate in the
case of OF models [by R. Kobayashi et al., Physica D 140, 141 (2000) and H. Henry et al. Phys.
Rev. B 86, 054117 (2012)] that an insufficient resolution of the small angle grain boundaries leads
to a lognormal distribution close to those seen in the experiments and the molecular scale PFC
simulations. Our work indicates, furthermore, that the LGSD is critically sensitive to the details of
the evaluation process, and raises the possibility that the differences among the LGSD results from
different sources may originate from differences in the detection of small angle grain boundaries.

PACS numbers: 61.72.Mm, 81.10.Aj, 81.10.Jt

I. INTRODUCTION

The majority of the solid matter we use appears in a
polycrystalline form (including technical alloys, concrete,
polymers, minerals, drugs, sugar, salt, cholesterol, pep-
tides, etc.); i.e., they are composed of a large number of
small crystallites. The properties of such materials de-
pend on the size-, composition-, and shape-distributions
of the crystallites they consist of. This also appears to
be the case for polycrystalline thin metal films, where
the properties of the grain size distribution may, e.g., in-
fluence the quality of metallization of semiconductors in
electronics industry (by influencing the current-carrying
capability via the resistance to electromigration [1, 2]).
The distributions that characterize the polycrystalline
structure can be influenced by the conditions of prepara-
tion (e.g., solidification, electrodeposition or sputtering)
and subsequent processing, including heat treatments.
As a result, the understanding of the grain coarsening
process and the ability to predict the associated proper-
ties of the polycrystalline matter are of high technological
importance, and have been the subject of intensive ex-
perimental and theoretical research.

Grain coarsening is mostly due to the motion of grain
boundaries and triple junctions in a way that leads to
the reduction of the excess free energy associated with the
grain boundary network. While this process is fairly sim-
ple, the complexity of the geometry makes it difficult to
predict the limiting grain size distribution (LGSD). The-
ory, experiments, and simulations agree that there exists
a (time invariant) limiting grain size distribution, which
evolves in a self-similar way, and the time dependence of

the average grain size can be expressed as (R) = kt",
where n is the growth exponent [1, 3]. Despite long-
standing efforts, no convincing theoretical derivation of
the LGSD has been proposed yet. Moreover, other phe-
nomena such as grain rotation, elasticity, and anisotropy
may affect the LGSD, adding to the difficulty of the task.

Herein, we concentrate on grain coarsening in two di-
mensional (2D) systems. The present results are ex-
pected to be relevant to 2D multi-grain structures, in-
cluding thin metallic/ceramic films, colloidal aggregates,
and plasma crystals. In the following paragraphs we
briefly review the 2D results from experiment, theory,
and simulation. This is a huge area indeed, and we can
only summarize the main results here. Although the rel-
evant process have been studied for some time, this brief
review will show that the results are not without contra-
diction and that no clear understanding of the discrep-
ancies among them has been reached yet.

A recent detailed experimental study that summarizes
results on 27 sputter deposited Al and Cu films [1] in-
dicates a lognormal LGSD with ¢ = 0.5 and p = —0.12
(Fig. 1), and n =~ 1/2 for the growth exponent. The
lognormal distribution,
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where x is the linear size of the grains evaluated from
their area, was found to be fairly robust. It remains an
accurate description under a broad range of experimen-
tal conditions, including purity of the sputtering target,
type of substrate, film thickness, temperature of depo-
sition, actual and homologous annealing temperatures,
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FIG. 1. The limiting grain size distributions theoretically pre-
dicted for two dimensions. Hillert’s distribution (dashed line)
is free from adjustable parameters. Parameters of the other
distributions were fitted to experimental results shown in Fig.
A1l of Barmak et al. [1]. Solid line: lognormal distribution
(o = 0.5, = —0.12, [1]); dotted line: Rayleigh distribution
(proposed by Louat) with fitted parameters o = 1.030 and
B = 2; dash-dot line: Weibull distribution with fitted param-
eters & = 1.001 and S = 2.367. The lognormal distribution
gives a nearly exact representation of the experimental data
for Al and Cu films (see Fig. Al of Ref. [1]). Here, R is the
equivalent radius computed from the grain area, whereas (R)
is its arithmetic average over all grains.

the time of annealing, the grain size, and the twin den-
sity within the grains [1]. This result is in agreement with
some previous experimental results on thin films [4, 5],
while other works indicate deviations from the lognormal
distribution [6]. It is also worth noting that significantly
smaller n values have also been reported in other works
[7, 8]. The main cause for grain coarsening is the excess
free energy of the grain boundary network, which relaxes
via curvature driven migration of the grain boundaries
[9]. The velocity of the latter is often sought in the form
v = kM, where k is the curvature, and M the grain
boundary mobility. It is expected that other phenom-
ena, such as grain rotation, elasticity, anisotropy, etc.
may also contribute to the dynamics of grain coarsening
[10].

There appears to be no consensus regarding the theo-
retical form of LGSD in 2D: Kolmogorov [11] has shown
that starting from a single grain of known volume, re-
peated crushing will lead to a lognormal distribution of
particle volumes. In Feltham’s early work [4] a lognor-
mal distribution was postulated. In a more sophisticated
theoretical treatment, that follows the route of Lifshitz,
Slyozov, and Wagner used in addressing Ostwald ripen-
ing [12, 13], Hillert [14] derived the distribution function
for two dimensional isotropic growth in multigrain struc-
tures
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Regarding grain growth as a statistical phenomenon tak-
ing place via the growth of faces, Louat [15] derived a
Rayleigh type grain size distribution. A statistical ex-
tension of Feltham’s approach by Kurtz and Carpay, in
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FIG. 2. (color online) The limiting grain size distributions
from computer simulations in two dimensions: diamonds —
Potts model [22]; circles, triangles pointing downward, and
squares — multi-phase-field models [22-24], respectively; solid
line — experiment Fig. Al from Ref. [1]; upward pointing tri-
angles — surface solver [28]; stars — grain boundary migration
model by Moldovan at al. [10]; full squares and circles — ori-
entation field models from Refs. [25, 26], respectively. Note
the similarity of the LGSDs from different types of simula-
tions, implying a Mullins-type [9] generic numerical solution
(full diamonds, taken from Ref. [1]).

turn, supports the lognormal form [16]. The empirical
Weibull distribution, corresponding to
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and its special case the Rayleigh distribution (8 = 2)
were also used to approximate the experimentally ob-
served LGSDs [17]. While the use of Weibull distribu-
tion is empirical in this context, the Rayleigh distribution
was derived by Louat [15]. Relying on the Neumann-
Mullins growth law, in more recent works Pande and
Cooper [18, 19] deduce a Fokker-Planck equation for the
grain size distribution, which yields a self-similar asymp-
totic solution that can be reached from arbitrary initial
state. They propose an approximate analytical solution
for LGSD, that can be tuned by varying a single param-
eter between the Rayleigh distribution (where all cur-
vature effects are neglected) and Hillert’s model (where
the drift velocity due to curvature is the only driving
force) [19]. Seeking a flexible empirical LGSD distribu-
tion, Rickman et al. quantify the deviation from the
lognormal distribution in terms of a cumulant expansion
tailored to the lognormal distribution [20].

The models discussed above predict n = 1/2. A com-
parison of the predicted LGSDs with parameters taken
from fitting to recent experimental data of [1] are pre-
sented in Fig. 1. In agreement with previous work
[1, 5, 19], these distributions appear to be less satisfac-
tory than the lognormal form.

Computer simulations have also been used extensively
to investigate grain coarsening. The results appear again
somewhat contradictory. For example early results on
Monte Carlo simulations for the Q = 32 2D Potts model
[21] indicate a fair agreement with Hillert’s mean field
model, yet a later Q = 72 Potts study reports a sub-



stantially different LGSD [22]. The other 2D models
predict rather similar limiting grain size distributions.
This includes a grain boundary migration based numeri-
cal approach by Moldovan et al. [10], three different ver-
sions of the multi-phase-field theory (MPF1 [22], MPF2
[23], MPF3 [24]), and two orientation field based models:
one by Kobayashi, Warren, and Carter (KWC) [25] and
another by Henry, Mellenthin, and Plapp (HMP) [26].
LGSDs for the OF models were reported in Ref. [27].
Another approach that led to similar results employed
a numerical surface solver to relax the interface energy
[28]. The predicted distributions are fairly similar (with
some scattering), although different models and meth-
ods are compared. This finding might originate from
the fact that these models all tend to reduce the free
energy associated with the grain boundary network. Ap-
parently, LGSD from these 2D simulations fit reasonably
well to the Weibull type probability density. Although
the investigated 2D simulations are consistent with each
other (Fig. 2), and follow the behavior obtained using
the model of Mullins [9] in Ref. [1], yet they significantly
differ from the lognormal distribution representing re-
cent experimental data [1]. These findings are consistent
with earlier results of Pande and Cooper [18, 19]. In-
terestingly, simulations performed using a dramatically
different process for coarsening, i.e. grain rotation, yield
a lognormal distribution [10], yet much different from ex-
periments (see Fig. 3).

Remarkably, the only simulation results for LGSD that
agree with the experiments are from the phase-field crys-
tal (PFC) model, an approach that works on the molec-
ular scale [29] (see Fig. 3). The PFC model developed
by Elder et al. [30] can be regarded as a simple dy-
namical density functional theory that incorporates the
crystal structure, anisotropies, elasticity, and dislocations
automatically (for a review on PFC see Ref. [31]). As
such, it contains a much richer physics that the previ-
ous models, including automatically elasticity, disloca-
tion dynamics, grain rotation, molecular scale description
of grain boundaries, etc. A possibility is that this rich-

1.5 T T
—Experiment

> -&-PFC
5 ---pure rotation
c 4l
[}
°
2 !
3 /
Sost !
[
o

O ', I L L ~N._'Y~-—» e

0 0.5 1 1.5 2 25 3 3.5 4

R/<R>

FIG. 3. (color online) The limiting grain size distributions
from computer simulations in two dimensions: solid line —
experiment [1]; full circles — phase-field crystal (PFC) simu-
lation [29]; grain coarsening via pure rotation [10]. Note the
excellent agreement between the PFC predictions and the ex-
periments.

ness of phenomena is responsible for the accurate LGSD
it predicts. Herein, we raise a different possibility, which
might explain at least partly the observed differences be-
tween LGSDs from simulations and experiments.

We use the orientation field models HMP and KWC
to demonstrate that the limiting grain size distribution
is critically sensitive to details of the evaluation of the
number of the grains, especially to the resolution of the
small angle grain boundaries. Variation of the misorien-
tation, below which a grain boundary is not detected
any more, yields a continuous transition between the
lognormal distribution that can be observed for poorly
resolved low angle grain boundaries (only a fraction of
them are found), and the general behavior from 2D sim-
ulations shown in Fig. 2, obtained when the low angle
grain boundaries are well resolved (the majority of them
was found). This finding raises the possibility that im-
proving the resolution of low angle grain boundaries in
the experiments (and maybe in PFC simulations) might
yield LGSDs falling closer to the results provided by the
2D simulations.

The present paper is structured as follows: In Section
II, we briefly recapitulate the essence of the orientation
field theories HMP and KWC, while Section III speci-
fies the materials properties and other conditions used in
the simulations. Section IV describes the details of the
evaluation methods employed for determining the LGSD,
with a detailed analysis of different factors that influence
the limiting distribution, and discuss the consequences.
Finally, in Section V, we summarize the main results and
offer a few concluding remarks.

II. ORIENTATION FIELD MODELS

We employ here two phase-field models that describe
polycrystalline solidification and grain coarsening on
equal footing: the KWC and HMP models described in
Refs. [25] and [26], respectively. In these models the
transition between the liquid and crystalline phases is
monitored by a structural order parameter, the phase
field ¢(r,t), whereas the local crystallographic orienta-
tion is specified by a scalar orientation field (r,t), nor-
malized so that 6 € [0,1], considering the crystal sym-
metry. For k-fold symmetry, the orientation angle ¢ can
vary between 0 and 27 /k. Owing to the k-fold symme-
try, 9 angles outside this region are equivalent to a spe-
cific orientation angle inside the [0, 27/k] regime. (Then
6 = ¥/(2n/k) € [0,1] describes all orientations.) Being
an angular variable §# = 0 and § = 1 are equivalent, and
the magnitude of the orientation field difference is lim-
ited: |AG| < % This should be considered, e.g., when
evaluating the differential operators acting on the orien-
tation field. For the sake of simplicity, isotropic systems
will be considered, yet the grain boundary energy de-
pends naturally on the misorientation in these models,
as will be displayed in Fig. 4(a) below.



A. Free energy functional

The free energy of the respective system is a functional
of the fields ¢(r,t) and 6(r,t), which can be written in
the following form for both orientation field approaches
we use here:

F= /dr{iT (Vo) + WTg(e)+

+ fbulk(¢) + fori(¢a ve)}v (4)

where the model parameters €2 and W are expressible
in terms of the free energy and thickness of equilibrium
solid-liquid interface, and T is the temperature. fpux
switches between the free energy densities of the bulk
solid and liquid phases according to the interpolating
function p(¢) as follows

four(9) = p(0) fs(T) + (1 = p(#)) A(T) ()
p(¢) = ¢°(10 — 15¢ + 6¢°), (6)

where the free energy densities of the bulk solid and liquid
phases, fi(T) and fi(T), respectively, can be taken from
thermodynamic databases.

The two orientation field based models we use differ
in the form of the orientational contribution to the free

energy, fori (¢a vo)

KWC(p,V0) = 1(¢)T { H:|VO| + Ha(VO)*}  (7)
NP (9, V) = q(¢)TH(VH)? (8)

where 7(¢) = ¢* and q(¢) = T&=02
differ slightly form the original formulations [32]. Param-
eters H, Hy, and Hs tune the strength of the respective

gradient terms, and scale the grain boundary energy.

These functions

B. Equations of motion (EOMs)

The time evolution of the system is assumed to follow
standard variational dynamics of non-conserved fields:
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where My (= const.) and My are the respective mobili-
ties, My = My s+ (My 1, + My s)p(¢), whereas (4 and (g
are noise terms that represent the fluctuations of the re-
spective fields. Their correlators are ((;(r,t),;(r',¢')) =
w;;2kT M;;0(r—r")d(t—t'), where w;; is the noise strength
coefficient for the ith field in the jth phase (i = ¢, 8 and
j=L,S). For further details of EOMs and their dimen-
sionless forms see Appendix I.

We found that in the orientation field models topo-
logical defects appear that resemble the disclinations ob-
served in 2D atomistic models using the hexatic order
parameter [33], which may influence the motion of grain
boundaries and trijunctions. This phenomenon has al-
ready been detected by Warren et al. [25](c). The prop-
erties of these defects and possible ways to remove them
via a complex orientation field, a 3-component orienta-
tion field, and other means will be addressed elsewhere
[34]. Herein, we use wg g, =0, wp,s = 0 and wy,, = 0.1,
to remove the pinning effect of these topological defects
in the orientation field.

C. Numerics

The dimensionless form of Egs. (9) and (10) were
solved numerically on rectangular grids of different sizes,
using finite difference discretization combined with ex-
plicit forward Euler time stepping, while prescribing peri-
odic boundary conditions. Parallel codes were developed
for a CPU cluster and GPU cards. The computations
were performed on GPU cards of various types.

III. MATERIALS PROPERTIES AND OTHER
CONDITIONS

In the simulations, we used the physical properties of
pure Ni. The volumetric free energy difference between
the liquid and the solid was estimated using Turnbull’s
linear approximation: Af = AH(Ty—T)/Ty [35], where
AHp = 2.61 x 10° J/m?® and Ty = 1728 K are the vol-
umetric heat of fusion and the melting point, respec-
tively. The thickness of the equilibrium solid-liquid in-
terface were taken as d = 2 nm, which is of the order
of magnitude of results from molecular dynamics simu-
lations [36]. The free energy of the solid-liquid interface,
vsr = 0.364 J/m? was taken from the compilation [37];
whereas a molar volume V,,, = 6.59 x 1075 m?/mol was
employed. Isothermal computations were performed at
T = 974 K. The diffusion coeflicient and the character-
istic length applied in making the EOMs dimensionless
(see Appendix I) were Dy, = 1072 m?/s and £ = 40 nm,
respectively. If not stated otherwise, the dimensionless
spatial and time steps were chosen as AZ = 3.125 x 1073
and At = 1.4844 x 10~8, which ensured the numerical
stability of the solution. The dimensionless phase-field
mobility was taken as MfMP = MfWC =0.9.

A. Synchronizing the HMP and KWC models

Herein, we synchronize the HMP and KWC models
so that they display similar properties (grain-boundary
energy and time scale for grain-rotation) under the same
circumstances; i.e., they can be viewed as models describ-
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FIG. 4. Properties of the grain boundaries predicted by the
orientation field models (the heavy lines are for the HMP
model, whereas the thin lines are for the KWC): (a) grain-
boundary energy vs. misorientation; (b) interface thickness
vs. misorientation (solid lines: phase field, dotted lines: ori-
entation field, dy denotes the half-width of the depression,
whereas dy stands for the 10% — 90% interface thickness); (c)
and (d) cross-interfacial phase- and orientation field profiles
at A = 0.1 and 0.5, respectively. x is a dimensionless length.

ing polycrystalline solidification/grain coarsening in the
same matter.

To match the properties of the solid-solid interface,
we have first chosen the dimensionless parameters (see
Appendix) as = 1.0, ~9Hé\/[P = 28.8, and ~9H£\4P =
92.68, and then varied the f)arameters of the KWC model
until similar grain boundary energies, interface profiles,
and time scales were obtained. This is realized by the
following set of dimensionless parameters a; = 10.64,
ay = 30.0, My*d¥C = 7.2 x 107*, and MGV = 1080.
These data ensure that in the bulk crystal (¢ = 1) the
orientation mobility is negligible in both cases.

The respective grain boundary energies and interfacial
profiles are shown in Fig. 4. The two models provide
indeed fairly coherent predictions. Omne of the impor-
tant features is the depression of the phase field at the
grain boundary, which indicates that the crystalline or-
der is disturbed within the grain boundary. For high
misorientations the phase field may get as low as ¢ ~ 0.3
here, but may reach ¢ = 0 at the melting point that im-
plies the presence of a highly disordered structure at the
grain boundary, a behavior similar to the one observed in
molecular dynamics simulations [38]. The relationships
between the depth of the phase-field depression and the
misorientation are shown for the two models in Fig. 5.

Next, we compare grain growth in the models. With
the present choice of mobilities, the growth rates of the
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FIG. 5. Phase-field minimum at the grain boundary vs. mis-
orientation for the HMP (heavy dashed line) and KWC (light

continuous line) models.
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FIG. 6. (color online) Grain growth predicted by the two

models are compared. With the present choice of parame-
ters the growth rates of the HMP and KWC models are of
comparable magnitude.

two models are of comparable magnitude [see Fig. 6].
The simulation data were fitted by the formula (R) =
A(t —to)™, where tg is the hypothetical starting point of
growth corresponding to (R) = 0. The fitting was per-
formed so that only data beyond the end of an apparent
initial transient period (8 x 10° and 10° time steps for the
HMP and KWC models, respectively) were considered.
This procedure yielded growth exponents comparable to
those from other models (HMP: n = 0.45 £+ 0.01; KWC:
n =0.5140.01).

B. Evaluation of LGSD

In determining the LGSD, we used typically eight
40962 simulations performed with different initializations
of the random number generator. We used one of the
following methods to generate the initial grain size dis-
tribution: (i) added noise to the equation of motion of
the phase field to initiate nucleation and growth; (ii) we
placed randomly oriented particles of 30 pixel radius ran-
domly in the simulation box and let them grow; (iii) we
also explored the case when the randomly oriented par-
ticles were placed on a square grid. The respective sim-



ulations yielded similar LGSDs, indicating that the long
time behavior is not sensitive to the initial conditions.

Unless stated otherwise, the grains were identified by
the watershed algorithm of MATLAB [39]. The water-
shed algorithm finds ” catchment basins” and ” watershed
ridge lines” in an image by treating it as a surface, where
light pixels represent high elevations and dark pixels rep-
resent low elevations. It has been applied to evaluate the
grain size distribution from the (1 — ¢) maps. In this
case, the catchment basins correspond to the grains and
the watershed ridge lines are the grain boundaries.

We have found that even merging eight 40962 simu-
lations (that contained initially ~ 17,200 randomly ori-
ented grains) the grain size histograms show some visible
scattering that makes difficult the comparison of LGSDs
not very far from each other. It was, however, detected
that at late stages of the evolution of the grain bound-
ary network (in which we are interested anyway), fitting
an appropriate analytic formula to the histograms (log-
normal or Weibull), the results are essentially indistin-
guishable (i.e., they match to several states of the grain
boundary network with a similar accuracy). In the case
of such states of the system, it makes sense to merge the
reduced distributions, to reduce the scattering of the his-
tograms. One needs to be careful, however, since this is
possible only at the end of the relaxation process, where
the limiting size distribution is established. We have em-
ployed this technique for the evaluation of all LGSDs
shown. For the details see Appendix II.

We have also evaluated the probability distribution of
the misorientations along the grain boundaries identified
by the watershed algorithm. For the details see Appendix
I11.

IV. RESULTS AND DISCUSSION

The aim of the present investigation is to clarify
whether differences in the accuracy of the evaluations can
significantly influence the results for the LGSD. This was
motivated by the fact that seemingly small changes in our
evaluation procedures for the LGSD could yield signifi-
cantly different distributions starting from the same raw
data. Here, we pinpoint the reasons for this behavior and
show that it is generic for orientation-field models. More
precisely, the shape of the LGSD critically depends on
the detection of small-angle grain boundaries. Beyond
the models treated here, this observation raises several
questions that will be discussed below.

A. Methods for distinguishing the grains

There are different possibilities to evaluate the grain
size distribution from the phase- and orientation fields.
Since the orientation field varies continuously across the
grain boundaries and thus the same orientations may oc-
cur in a grain and at grain boundaries elsewhere, the
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FIG. 7. (color online) Finding the grains on the basis of the
phase field depression at the grain boundaries in the HMP
model (only a small fraction of a large simulation is shown).
Original (a) orientation and (b) the gray-scale version of the
phase field. (c)—(f) Black and white maps obtained by apply-
ing thresholds ¢, = 0.79,0.89,0.98, and 0.99. If ¢ < ¢+ the
pixel is painted black, the rest is colored white. Note that
recognition of the small angle grain boundaries happens to
different degrees in these images. Accordingly, the respective
grain counts and the corresponding size distributions differ.

recognition of grains is more complicated from the ori-
entation field. Thus, in a previous work [27], we have
opted for the identification of the grains via the depres-
sion of the phase field at the grain boundary, and used
the watershed algorithm to locate them, yielding the red
curves in Fig. 2. Herein we introduce a different ap-
proach that is also based on the phase-field map, yet
relies on a threshold value in recognizing where the grain
boundaries lie, allowing thus for a continuous tuning of
the fraction of small angle grain boundaries considered
in the evaluation.

B. Tunable approach to distinguish grains

As demonstrated by Figs. 4 and 5, the depth and width
of the phase-field depression at the grain boundary de-
pends on the misorientation. As a result, recognition of



the small angle grain boundaries becomes more difficult,
as they become less visible for A6 — 0. The evaluation
procedure is illustrated in Fig. 7. Figs. 7(a) and 7(b)
show the original orientation field and phase-field distri-
butions. Here, we use a discretized gray-scale represen-
tation of the phase field that has 256 shades. We use the
watershed algorithm of MATLAB [39] to determine the
grain boundary network. This discretization of the gray
hue removes a minor (~ 107%) scattering of the phase
field in the vicinity of the grain boundaries that origi-
nate from the fluctuations of the orientation field in the
liquid phase. (This scattering would otherwise produce
very small grain sizes, when applying the watershed al-
gorithm.) This procedure results in well discernible grain
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FIG. 8. Limiting grain size distributions for the evaluations
of the HMP simulation shown in Figs. 7(c), 7(d), and 7(f),
obtained using the following threshold values: (a) ¢ = 0.79,
(b) 0.89, and (c) 0.99. Note the similarity between the ex-
perimental distribution and the one obtained with the lowest
value of the threshold ¢;;. Comparable results were obtained
with the KWC model.

boundaries even in the case of small angle grain bound-
aries, where the phase-field depression is small [see Fig.
7(b)]. One expects that in the experiments recognition
of small angle grain boundaries is more difficult. A sim-
ilar situation occurs here, as the phase-field depression
varies with misorientation. In order to understand how
the LGSD depends on the recognition of the small angle
grain boundaries, we have processed the gray-scale im-
age further by converting it to black and white using a
threshold value for phase field, ¢:. If ¢ < ¢y, the ac-
tual pixel is considered as belonging to a grain boundary,
and is painted black, the rest is colored white. Increas-
ing ¢, an increasing number of pixels are recognized
as belonging to grain boundaries, and an increasing frac-
tion of the shallower depressions representing the small
angle grain boundaries are detected [see Figs. 7(c)-7(f)].
Evidently, with increasing ¢y, an increasing fraction of
the simulation box becomes black. The theoretical up-
per limit to detect any difference using this method is
¢tn > 1 —1/256. Once the grain boundary network was
computed, the grains that are defined as white areas,
whose pixels can all be visited from its other pixels with-
out crossing a grain boundary, using the watershed al-
gorithm. The grains identified so are then divided into
size categories, and presented in the form of histograms
approximating the respective probability density distri-
bution.

1. Varying the threshold

As one may expect on the basis of Fig. 5, the LGSD
depends on the choice of the threshold ¢;;,. The LGSDs
obtained using the threshold values applied in Figs. 7(c)-
7(f) are compared with each other and the experimental
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FIG. 9. (color online) Comparison of the histograms charac-
terizing misorientation distributions for thresholds ¢, = 0.79
(blue) and ¢¢p = 0.99 (orange) in the case of the HMP simu-
lation at 4 x 10° time steps. In constructing the histograms 25
equal size misorientation ranges were used. Note the reduced
amount of small misorientations in the distribution obtained
with ¢, = 0.79.
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FIG. 10. (color online) Limiting grain size distributions for
(a) the HMP and (b) KWC simulations. Note the closeness
of the results evaluated using ¢, = 0.99 and those evaluated
from the grayscale image of the phase field map using the
watershed algorithm. It is also remarkable that with the low
threshold ¢, = 0.79 lognormal type distributions close to the
experimental one were obtained.

distribution in Fig. 8. We have also evaluated the prob-
ability distribution of the misorientations at the grain
boundaries (see Fig. 9). A comparison of the distribu-
tions corresponding to ¢, = 0.79 and ¢y, = 0.99 clearly
indicate that the major difference between the respective
misorientation distribution is indeed a lack of small an-
gle misorientations in the former case. It appears that
with increasing ¢, we see a transition from a distribu-
tion falling close to the experimental lognormal distri-
bution towards the generic Mullins-type LGSD the ma-
jority of the 2D simulations predict (¢f. LGSD colored
blue and red in Fig. 2). The distributions obtained using
¢rn = 0.99 are in fact very close to those obtained from
the grayscale image of the phase field map using the wa-
tershed algorithm (see Fig. 10), implying that with this
threshold the majority of the low angle grain boundaries
was found.

These results indicate that the LGSD is critically sensi-
tive to the resolution of the small angle grain boundaries,
and raise the possibility that this sensitivity may at least
partly be responsible for the deviation between the re-
sults of the (fairly coherent) 2D simulations shown in Fig.
2 and other methods that lead to different LGSDs. We
note in this respect that with the exception of approaches
based on the OF concept; the simulations shown in Fig.
2 are immune to such errors: e.g., the multi-phase-field
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FIG. 11. Limiting grain size distributions for KWC simu-

lations with 30 equidistant orientations, obtained using the
threshold values: ¢¢, = 0.79 0.85, 0.86, and 0.99. Note that
the transition between the lognormal and the Mullins type
distributions happens abruptly between ¢, = 0.85 and 0.86.
Comparable results were obtained with the HMP model.

models use an individual phase-field for each orientation,
so in these models grains can always be distinguished.

2. Discrete orientations

The MPF simulations are performed usually with a
relatively large but finite number of discrete orientations
(in early studies about 30 equidistant orientations were
regarded as a satisfactory approximation in 2D [40], how-
ever, recently ~ 100 orientations are considered more
appropriate [23]). We have tried a similar approach in
the orientation field models: we started simulations with
initial grains of 30 equidistant orientations of equal prob-
ability. Apart from the effect of establishing a continu-
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FIG. 12. (color online) The number of grains detected as
a function of the misorientation threshold in the KWC sim-
ulations. Results obtained with continuous (triangles) and
discrete (circles) initial orientations of the seeds are shown.
Note that in the discrete case, the jumps correspond to mul-
tiples of the minimum misorientation Afmin = 1/30 defined
by the initial set of orientations.

ous transition at the grain boundaries, the initial orien-
tations remained dominant during the process of grain
coarsening. This results in grain boundaries with mis-
orientations that are an integer multiples of the minimal
misorientation Af,;n = 1/30. Accordingly, when varying
@th, the change of the LGSD happens stepwise between
¢, = 0.85 and 0.86 for the KWC model, and between
¢, = 0.81 and 0.82 in the case of the HMP model. This
stepwise behavior is also visible, when plotting the num-
ber of detected grains as a function of the misorientation
Af that corresponds to the threshold ¢;, used in the
evaluation process (Fig. 12). For grain orientations vary-
ing continuously, the number of grains also vary contin-
uously, whereas for equidistant discrete orientations the
number of grains varies stepwise. The respective misori-
entation distributions reflect these [see Fig. 13(a)]. Fur-
thermore, in the case of the lower threshold (¢, = 0.85),
the first peak and part of the second is missing from the
misorientation distribution, which explains the abrupt
change of the LGSD, and shows again the importance
of the amount of small angle grain boundaries in shaping
the LGSD [see Fig. 13(b)].

3. A few additional remarks

It is worth mentioning that although in the OF models
the grain boundary energy is misorientation dependent,
still it does not depend on the inclination of the inter-
face, whereas the dependence on inclination is evidently
present in the experiments and the PFC simulations.
Also, all the simulations considered herein are strictly
two-dimensional. Yet, in principle, it cannot be excluded
that as the real experiments are quasi-two-dimensional
(the thickness is not fully negligible), they have to be
modeled as thin but three-dimensional cases, when ad-
dressing the LGSD. Such studies are, however, out of the
scope of the present work.
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FIG. 13. (color online) Histograms showing the distribution
of the misorientations in the KWC simulations at 2 x 10°
time steps. (a) Histogram obtained for ¢, = 0.86 using 90
bins that shows the discrete nature of the orientations. (b)
Comparison of histograms obtained for thresholds ¢, = 0.85
and 0.86, corresponding to positions slightly below and above
the jump at Af = 1/30 in Fig. 12. (Here 15 bins were used
in constructing the histogram.) Note the lack of small angle
misorientations in the case of the lower threshold.

We note furthermore that the present results may
have implications regarding the controversy between the
lognormal LGSD from experiment and PFC simula-
tions, and the distribution that appears to be a generic
(Mullins-type) solution from other 2D simulations: (a) It
might be possible that the population of the small angle
grain boundaries is indeed lower in the experiments and
the PFC model than in the simulations shown in 2. If so,
evaluation of the misorientation distribution may be use-
ful tool for a more complete characterization of the grain
coarsening process. (b) Another theoretical possibility is
that the resolution of the small angle grain boundaries
is less satisfactory in the cases of experiments and PFC
simulations. While the TEM experiments (whose results
are shown as reference in Figs. 1, 2, and 3) are expected
to resolve all grain boundaries no matter what the misori-
entation is [41], other methods may be less successful in
detecting the small angle grain boundaries. Concerning
the PFC simulations, our experience in analyzing poly-
crystalline patterns in terms of the complex hexatic or-
der parameter seems to indicate that the evaluation of



the numbers of grains may be subject to uncertainties
especially when the small angle grain boundaries are de-
fined by only a few dislocations [42]. Work is underway
to clarify these issues further.

Finally, we wish to stress the point that grain coarsen-
ing is a complex process, which depends on several fac-
tors. Our work shows that minor changes in the detection
of low angle grain boundaries can lead to completely dif-
ferent LGSDs, which may hide the effect of other factors.
Although our study is limited to the OF models, it indi-
cates that extreme care needs to be taken to ensure the
accuracy of the grain size distribution.

V. SUMMARY

Using orientation field based phase-field models we
have investigated how the detection of small angle grain
boundaries influence the limiting grain size distribution
(LGSD), towards which the grain boundary network re-
laxes at long times. We make the following concluding
remarks:

(i) It appears that the 2D computer simulations relying
on the orientation field based phase-field models predict
LGSDs that are consistent with LGSDs from the Q = 72
state Potts model, Mullins’ model, three versions of the
multi-phase-field theory, and with results from a numer-
ical surface solver. These distributions, however, differ
significantly from the lognormal LGSD emerging from
the experiments and the 2D phase-field crystal model.

(ii) In the orientation field models we have observed
that the LGSD is critically sensitive to the detection
of the small angle grain boundaries: We introduced an
evaluation method in which the variation of a thresh-
old changed the fraction of small angle grain boundaries
detected. It has been shown then that considering an in-
creasing fraction of the small angle grain boundaries, the
LGSD varies from a lognormal distribution falling close
to those emerging from the experiments and the phase-
field-crystal model, to a Mullins-type LGSD the other 2D
computer simulations predict. The respective changes in
the amount of small angle grain boundaries are clearly
seen in the misorientation distribution along the grain
boundary network.

(iii) Further work is needed to clarify whether in the ex-
periments and phase-field-crystal simulation, the popula-
tion of the small angle grain boundaries is indeed smaller
than in other computer simulations, or perhaps other ef-
fects are responsible for the observed deviations in the
respective LGSDs.
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APPENDIX I: DIMENSIONLESS FORM OF THE
ORIENTATION FIELD MODELS

A. Kobayashi-Warren-Carter-model:

The free energy functional:
E2T 2
— [ar{ G (v - wrgo) + 11 - ploars

+¢" [HiT|V0| + HyT(V0)?] }
(11)
where
2 — w. W =

4
]11-—-a1 %ﬁL

6v2vs1 . _ AH T .
6vZs Af_if(l_ﬁ)
8’YSL5

Hy = ax=F

EOM for the phase-field:
6= Mo{ T(V20) - WTy'(0) 47 (9]
—4¢° (H,T|V0| + HoT(V0)?) } (12)

measuring the length and time in units & and 7 =
€2/ Dr, respectively, one obtains the following dimension-
less equation of motion:

6= M¢{©2¢ —Wy'(8) + Afp' ()
—a0° (H,[96) + Aa(90)?) } (13)

where

M= Mye®T

Dp,

W Mgzz 6f'YSL % 6\[;,;“5 %2
Kj= 3 -8 (1- £) 4
Hy = 5 = o 3k e = ol
Hy = & = o™il s = an®f?

EOM for the orientation field:

0 = MyV {¢>4{ IVZI + 2H,T (V@)H (14)



or in dimensionless form:
VO | omeve
Vo)

6 = MgV {¢4

} (15)

where MQKWC = MyéH,T /Dy, and Hg = 22 = Z—f%‘;

B. The Henry-Mellenthin-Plapp model:

Free energy functional:
2
F= [ar G (V0 + WTa(0) - o)A s+
ral@HT(vO7 ) (10

where H = aQSVTSiLé, whereas €2, W, and Af are the
same as for the KWC model.

EOM for the phase-field:

¢ = My{ST(V?9) = WTg'(¢) +1'(9)Af~
~d(9)HT(VO)*},  (17)

yielding the following dimensionless equation of motion:

6= M, {V26— Wg'(6) + Afp (¢)—

—¢(®)H(VO)?},  (18)

EOM for the orientation field:
0 = MgV {HTq()(V0)}, (19)

and in dimensionless form:
0= 1% {a(6)(V0) }, (20)

while MPMP = MyHT/Dy,.

APPENDIX II: REDUCING THE SCATTERING
OF LGSD

Under the conditions used herein, practically steady
state distribution was achieved at dimensionless time
of about £; = 2 x 105A¢ for both the HMP and KWC
models. The data representing the state of the system
were saved after every 10° time steps until reaching
dimensionless time of t5 = 4 x 10A¢. The raw distribu-
tions corresponding to £ and t5 are shown in Fig. 14. In
this period the average size varied from (R)/Axz = 61.0
to 100.7 for HMP and from (R)/Axz = 57.1 to 96.0 for
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FIG. 14. Raw distributions obtained for ¢, = 0.79 at times
t1 = 2 x 10°At and t; = 4 x 10°At for the HMP and KWC
models.

KWC. The reduced distributions and the respective
fitted (lognormal) distributions are presented in Fig.
15(a) and 15(b) for the HMP and KWC models. The
difference of the distributions fitted at the two limiting
cases is characterized by the total variational difference
5 = 3 J37 Ipe, (x) — p, (2)|dw, yielding 67 = 0.020 for
HMP and 0.011 for KWC, respectively. The LGSDs
obtained by merging the respective 21 reduced distribu-
tions are reasonably smooth (see Fig. 16), and enables
the detection of small differences between LGSDs that
would be hardly perceptible otherwise due to statistical
scattering. Here ¢y, = 0.79 was used. Somewhat larger

©c o @
A o o -
T

Pobability density

I
)

o

. o 9
> oo o =
. . .

Pobability density

<
[N
T

FIG. 15. Reduced grain size distributions (symbols) and the
fitted lognormal distributions (lines) evaluated at ¢1 (solid
line) and ¢ (dashed line) from (a) the HMP and (b) the KWC
simulations using the threshold ¢, = 0.79 in determining the
grain size distribution. For the respective (R) data see the
text.
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FIG. 16. The LGSDs obtained by merging 21 reduced dis-
tributions evaluated at equidistant instances from t¢; and to
while using a threshold of ¢, = 0.79. Note that the ori-
entation field models HMP (filled circles) and KWC (open
squares) yield rather similar LGSDs.

differences were observed in the case of Weibull fits to
the data from the watershed algorithm (ér = 0.020 for
HMP and 0.031 for KWC), as there the applied Weibull
functions approximate the distributions less accurately.

APPENDIX III: EVALUATION OF THE
MISORIENTATION DISTRIBUTION

In order to characterize the grain boundary network,
we have evaluated the distribution of the misorientations
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weighted with the number of pixels occurring in the wa-
tershed map (Fig. 17). Pixels assigned to the ” catchment
basins” found by the watershed method were associated
with the orientations of the respective areas. The num-
ber of the pixels in the ”watershed ridge lines” were used
to represent the frequency of the local misorientation.
A histogram was made of the latter, an approximation
of the probability density distribution of misorientations
along the grain boundary network. The misorientation

\

ot
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}

FIG. 17. (color online) Watershed map corresponding to the
phase field map shown in Fig. 7(b). The watershed ridges are
white, whereas the catchment basins are colored randomly.
Note the extra grain detected relative to Fig. 7(f), which is
hardly visible in the grayscale image.

distribution defined so converges towards a limiting dis-
tribution at about the same time as the LGSD.
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