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Kinetics of coarsening have dramatic effects on the microstructure:
Self-similarity breakdown induced by viscosity contrast
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The viscous coarsening of a phase separated mixture is studied and the effects of the viscosity contrast between
the phases are investigated. From an analysis of the microstructure, it appears that for moderate departure from
the perfectly symmetric regime the self-similar bicontinuous regime is robust. However, the connectivity of one
phase decreases when its volume fraction decreases or when it is becoming less viscous than the complementary
phase. Eventually self-similarity breakdown is observed and characterized.
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I. INTRODUCTION

The phase separation and the subsequent coarsening of the
microstructure under the effects of the surface tension is an
ubiquitous mechanism in industrial processes [1–3]. In this
context understanding how patterns are formed and how they
can be controlled is highly desirable. However, this process
is complex and involves different mechanisms. Indeed, after
a quench an initially thermodynamically stable mixture will
lose stability [4], it will then phase separate spontaneously
through spinodal decomposition [5]. In both cases, after the
initial phase separation process, a complex microstructure has
spontaneously formed. It is constituted of the two phases that
are separated by an interface with a huge surface area. The
evolution of the system will then be driven by the surface
tension and will lead to an increase of the characteristic
length scale of the pattern l . If both phases are liquid, the
coarsening process involves two successive regimes. First,
when l is small the coarsening is mostly due to diffusion
and l grows as t1/3 [6–11]; thereafter, when l is large the
effects of fluid flow become dominant [12–17] and l grows
as t . Hence the time evolution of the characteristic length
scale of the microstructure is well understood. However, the
understanding of the microstructure itself and of how it can be
controlled is limited. Indeed, the volume fraction of the phases
can be used to control the microstructure and, for instance,
by properly choosing volume fractions of the phases, one can
tune a transition from a bicontinuous microstructure where
both phases are percolating clusters to an inclusion in a matrix
pattern. (See Fig. 1.)

This approach is mainly focused on the initial phase sepa-
ration process and overlooks the importance of the kinetics of
the coarsening process, which is well exemplified by recent
experiments on the viscous coarsening of glasses [18,19].
Indeed it has been shown that the microstructure is affected
by both the volume fraction of the phases and their relative
viscosities. Hence, while the driving force for coarsening is
always the reduction of the surface energy, the kinetics of
the coarsening, that is the path taken by the system to dissi-
pate energy, has a dramatic effect on the microstructure. For

instance, if the volume fraction of the minority phase is close
to 0.3, when it is much more viscous than the majority phase, a
bicontinuous microstructure remains during coarsening, while
if it is much less viscous a transition toward a discontinuous
microstructure is observed. This is in line with previous the-
oretical work where the interplay between diffusion and flow
during the initial stage of spinodal composition was studied
[17] or where viscoelastic effects were taken into account
[3,20,21].

Here, we focus on the late stage of coarsening in liquids
where the pattern evolution is due to viscous flow (diffusion
can be neglected) and where the inertial effects are also neg-
ligible. Using numerical simulations we show that tuning the
kinetics of the coarsening process through the viscosity ratio
between the phases dramatically changes the microstructure.
The paper is organized as follows. First we present the model
equation, the numerical methods, and the choice of the initial
conditions and of parameters in the light of the physics of
the coarsening process. We also describe briefly the tools that
have been used to describe the microstructure. Thereafter, we
present the numerical results in the case where the self-similar
coarsening is robust and we discuss its loss of stability. Finally
we conclude.

II. METHOD

The thermodynamics of a binary fluid is well described
by the diffuse interface theory of Cahn and Hilliard [4]. The
simplest symmetric form of the Cahn-Hilliard free energy
reads as

F =
∫

ε2(∇c)2 + A[c2(c − 1)2]. (1)

With such a choice, when A > 0, a homogeneous mixture with
a composition close to 0.5 will spontaneously phase separate
into two phases with concentration zero and 1. The surface
tension associated to the interface between the phases and its
thickness can be chosen by adjusting A and ε. Here ε2 = 2.56
and A = 4 were chosen so that γ ≈ 0.75 [16] and so that
the interface thickness is of the order of wint = 1.6 [4]. The
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FIG. 1. Typical images of the interface between the phases for different values of the parameters. The color of the surface indicates the
Gaussian curvature (clear or yellow: Negative or zero; red or dark: Positive). One can see that the regions with positive Gaussian curvature are
more present in the later case. The volume fraction of the minority phase is 0.6 and the viscosity of the minority phase is equal to the viscosity
of the majority (left), 16 times smaller (center) and 128 times smaller (right).

coarsening dynamics via convection and diffusion is governed
by the coupled Navier-Stokes [Eq. (4)] and the convective
Cahn-Hilliard (CH) [Eq. (2)] equations (NSCH), also known
as model H [22]. The Navier-Stokes–Cahn-Hilliard [23]
model was used along with the incompressibility constraint
[Eq. (4)]:

∂t c + v · ∇c = −M�μ, (2)

∂t v + ∇ · (v ⊗ v) = −1

ρ
(∇p + c∇μ) (3)

+∇ ·
(

ν(c)

2
(∇v + ∇vT )

)
,

∇ · v = 0. (4)

In the Cahn-Hilliard equation [Eq. (2)], M is the mobility and
μ = δF/δc is the chemical potential that derives from the CH
free energy.

In the Navier-Stokes equation [Eq. (3)] the −∇p term on
the right-hand side (RHS) includes a Lagrangian multiplier
that forces incompressibility. The second term is the ther-
modynamic stress and accounts for capillary forces. The last
term accounts for the viscous dissipation with a composition
dependent kinematic viscosity:

ν(c) = (1 − c)ν1 + c ν2, (5)

where ν1 and ν2 are the viscosities of the two phases cor-
responding to c = 0 and c = 1. The viscosity contrast is
then defined as Cν = ν1/ν2. The mass density is ρ. The
model equations were simulated numerically using standard
approaches [24–27] that are described in the Supplemental
Material of [28] together with a more detailed description of
the model equations that is inspired by [29,30].

The NSCH model reproduces well the initial phase sepa-
ration followed by the coarsening of the microstructure that
is due to diffusion at small length scales with a characteristic
length scale growing as l ∝ t1/3 [6,7]. At larger length scales
the coarsening is driven by convection that is governed by
surface tension and viscous dissipation. As a result l grows
linearly: l = v0t ∝ γ /νt [13], where γ is the surface tension
and ν is the viscosity of the fluid when Cν = 1. The transition
from the diffusive growth to a viscous growth occurs when
v0 is much larger than the growth velocity associated with

diffusion (which itself is a function of the mobility of chemical
species and of the chemical potential difference induced by
the Gibbs effect). This translates into the fact that the Péclet
number (Pe = lv0/M/γ ) is large. Finally the viscous growth
law loses its validity when inertial effects cannot be ne-
glected [the Reynolds number Re, defined as l/l0, where l0 =
ν2/(γ ρ) becomes large]. Since, we are considering fluids with
different viscosities, two Reynolds numbers can be computed:
One for each phase. Since the fluid flow in both phases share
the same velocity and since there is a clear relation between
the fluid flow velocity and the effective viscosity νeff = √

ν0ν1

[28], the Reynolds number in each phase is written Re1,2 =
l/(ν2

effγ ρC±1/2
ν ).

Here we have limited ourselves to the viscous coarsening
of an already phase separated mixture, assuming that the
viscosity is sufficiently high to avoid the effects of fluid flow
during the initial phase separation and before well defined
phases are present and coarsening takes place [17]. It is
important to note that during the course of the coarsening,
since l is growing, these two numbers grow (proportional to l).
As a result, during the coarsening of a bicontinuous structure,
both Pe and Re will increase and there is a transition from
a diffusive coarsening regime where (Pe << 1, Re << 1) to
a viscous dominated regime (Pe � 1 and Re << 1) followed
by an inertia dominated regime (Pe << 1, Re � 1)[31]. Here
we have focused on the well defined Siggia regime for
which Pe � 1 and Re << 1. These constraints apply on the
macroscopic length scale. In contrast with this requirement,
at the scale of the interface, the flow deforms the concen-
tration profile through the interface and therefore changes
the surface tension. This effect is unwanted and needs to be
counterbalanced by an appropriate restoring mechanism. In
actual systems this mechanism is diffusion, which is effective
on the scale of the actual interface thickness. Here, in order
to allow computations, the interface thickness is increased,
and some care must be taken to ensure that the diffusion is
still efficient enough to restore the equilibrium profile. This
translates into the fact that the interface Péclet number must
be small enough. According to these constraints and using
the results of [28] we have chosen ρ = 1, νeff = √

ν0ν1 =
8, and a mobility of M = 0.0625. With this choice of
parameters and viscosity contrasts ranging from 1 to 128
both the inertial and diffusive effects can be neglected during
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coarsening for system characteristic length ranging from ≈20
to 200. However, when considering viscosity contrast signif-
icantly higher than 128, the decrease of the viscosity of the
fluid phase is likely to lead to a significant departure from the
ideal low Re regime with parameters used here. In the case of
experimental systems presented in [18], the viscosities of both
phases are such that they are both in the low Re regime.

In our simulations the grid spacing is set to 1 and time
step �t is also set to 1. Typical domain size is 10243, which
ensures that finite size effects are negligible. The constraints
on the macroscopic Péclet number and on the interface Péclet
number imply that the initial phase separation is always
affected by the flow and by the viscosity contrast between the
two phases. Therefore, we have chosen to use initial condi-
tions that were computed through a well defined procedure
(described in the Appendices). This approach allows us to
focus on the effects of the coarsening process itself and has
the advantage to allow building different microstructures with
different statistical properties in order to test the robustness
of the self-similar regime by showing whether the same self-
similar regime is reached from two different initial conditions
that are not simply two realizations of the same stochastic
process. During the buildup of the initial condition the volume
fraction of the phase 1, ϕ, is set.

Finally we present briefly the tools of analysis that were
used here. As in our previous work [28], the microstructure
is first characterized by a characteristic length scale l that is
computed as the ratio between the total volume and the total
interface between the phases. More precisely, it is defined
using an energetic approach:

l = V γ∫
ε2(∇c)2

, (6)

which gives actually l = V/S when the interface between
the phases corresponds to an equilibrium profile. In order to
characterize more finely the microstructure other quantities
are studied. The geometry of the pattern is described using the
statistical properties of the curvature of the interface between
the phases. From the field of the implicitly defined interface,
the curvatures are computed using implicit formulas [32]. The
probability distribution functions of the principal curvatures
are then determined as in [8,9,28]. A typical example of
the PDFs contour that will be used as a reference in the
following is shown in Fig. 2. In addition integral quantities
are considered: The averaged mean curvature rescaled by l
and the rescaled genius number: g = l2[1 − ∫

V κg/(4π )]/S,
where κg = κ1κ2 is the Gaussian curvature of the interface.
The Gaussian curvature is independent of the orientation of
the interface and the genius number gl = [1 − ∫

V κg/(4π )] is
a topological invariant of the pattern which is directly related
to its Euler’s characteristic. The orientation of the surface is
chosen so that the normal points toward the inside of the phase
for which the volume fraction is given.

In addition, the conductance G of the microstructure under
the assumption that one phase is conducting and the other
is isolating (details of the computation and of the numerical
method are given in the Appendices) is also computed. This
quantity gives an estimate of the connectivity of the phase.
Indeed, when the phase is nonpercolating it goes to zero,
while when it is percolating it can be viewed as the averaged
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FIG. 2. . Contour plot of the PDFs of the principal curvature for
a volume fraction of ϕ = 0.5 for two values of the viscosity contrast
Cν = 1 (a) and Cν = 128 (b). The contour lines are equally spaced.
Taken from [28]. Contours have been taken at two distinct times
corresponding to (solid) l ≈ 23 in (a) [30 in (b)] and to (dashed)
l ≈ 88 in (a) [84 in (b)] (dashed).

total surface area of the channels that go from one side of the
system to the other.

III. RESULTS

During the course of our simulations two distinct regimes
have been observed. The first one is a continuation of the
regime previously described [28] for the case where the
volume fraction is 0.5. However, considering volume fractions
that differ from 0.5 leads to more dramatic effects of the
changes in flow parameters. Indeed, the system properties are
invariant by the transformation:

c → 1 − c,

ν1 → ν2, (7)

ν2 → ν1.

This implies that when changing ϕ to 0.5 + (0.5 − ϕ) and Cν

(logCν) to 1/Cν (− logCν), the quantities that depend on the
orientation of the interface such as the mean average curvature
〈κm〉 are transformed into −〈κm〉, while quantities such as the
average Gaussian curvature 〈κg〉 that are independent of the
interface orientation are transformed into 〈κg〉. As a result in
the parameter space (ϕ, logCν), (ϕ = 0.5, Cν = 1) is a center
of symmetry that corresponds to a point where the interface
has zero average mean curvature and to an extremum of the
average Gaussian curvature. As a result the vicinity of (ϕ =
0.5, Cν = 1) reflects the symmetries of the problem: More
specifically, the average Gaussian curvature when changing
parameters is marginally affected which implies that the con-
nectivity of the bicontinuous structure is mostly unchanged.
In the following we will show that in the more general case,
where ϕ �= 0.5, this is no longer the case in the self-similar
regime. In addition, we will present a description of the loss
of stability of the self-similar regime and give a rationale for
the transition inspired by [19].

Self-similar regime

For a wide parameter range around the perfectly symmet-
ric case, an initially bicontinuous structure evolves after a
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transient regime in a self-similar manner as it has been
described previously. The morphology of the self-similar
structure is affected by the control parameters (the volume
fraction of the phase ‘1 and the ratio of the viscosities of the
phase 1 and of the phase 2). In order to give a clear picture
of the effects of varying both parameters, we will describe
the effects of changing the relative viscosity of the majority
phase with respect to the minority phase for a given value
of its volume fraction. We will also describe the effects of
changing the volume fraction for a given relative viscosity
of the less viscous phase with respect to the more viscous
one. One should note that while the former approach had
already been presented in a previous work it was restricted
to variations around the symmetric point and it was limited
to a volume fraction of 0.5. This, because of symmetries,
implied that the range over which the ratio of viscosities could
be varied was limited to two orders of magnitudes (between
1 and 128). Here since we no longer consider the perfectly
symmetric case, the range over which the ratio can be varied
is four orders of magnitude (between 1/128 and 128). In
addition, the parameter value Cν = 1 is no longer a center of
symmetry. Hence, thanks to the departure from the vicinity of
the center of symmetry and to the wider range of viscosity
contrast that can be explored, more visible changes of the
microstructure induced by tuning the flow parameters are
expected.

This is well illustrated in Fig. 1 where, for three differ-
ent values of the viscosity contrast between the phases, the
interface between the two phases is plotted at a time of a
simulation where the self-similar regime is established and
for approximately the same characteristic length scales l . The
volume fraction of the minority phase is ϕ = 0.3 and the
interface is plotted (and colored proportionally to its Gaussian
curvature) when it is four times more viscous, four times
less, and 16 times less viscous than the majority phase. From
these pictures, it is clear that the microstructures are different.
When the minority phase is more viscous, regions of positive
Gaussian curvature can hardly be seen on the interface. On the
contrary, when the minority phase is made less viscous the
surface area of regions with positive Gaussian curvature on
the interface is increasing. It should also be noted that these
regions correspond to spherical caps of the minority phase
protruding in the majority phase (both κ1,2 < 0). Hence when
decreasing the relative viscosity of the minority phase, the
microstructure is evolving from a structure that is a network of
capillary bridges that are close to minimal surfaces with zero
mean curvature and negative Gaussian curvature to a similar
structure with the addition of multiple buds of the minority
phase protruding in the majority phase.

In the following parts of this section we will present evi-
dence of the self-similar nature of the coarsening regime and
quantitative measures of the effects of changing the viscosity
contrast and the volume fraction on the microstructure. The
self-similar nature of the coarsening regime is well illustrated
in Fig. 3, where the contour of the PDFs of the rescaled princi-
pal curvatures are plotted for different values of the viscosity
contrast and volume fraction (ϕ = 0.45 and ϕ = 0.35). On
each plot contours have been plotted at different times cor-
responding to l ≈ 40 and l ≈ 80 and they superimpose well,
which indicates that the coarsening process is self-similar as it
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FIG. 3. Contour plot of the PDFs of the principal curvatures for
ϕ = 0.45 (top) and ϕ = 0.35 (bottom) and Cν equal to 1/128, 1,
and 128 from left to right. The sign convention is chosen so that
the negative curvatures correspond to the center of curvature in the
minority phase (normal vector pointing toward the minority phase).
One can see that there is a clear change in the shape of the distribu-
tion. Nevertheless, the self-similar nature of the coarsening regime is
illustrated by the fact that the rescaled PDFs are independent of the
characteristic size of the microstructure for two different values of
the characteristic length.

was for ϕ = 0.5. The effects on the patterns of changing both
the volume fraction and the viscosity contrast are detailed in
the following.

When the volume fraction is ϕ = 0.45, close to ϕ = 0.5,
the PDFs are very similar to the one presented in [28] and
recalled in Fig. 2. On each plot two rescaled PDFs taken for
l ≈ 40 and l ≈ 80 are represented and superimpose well. For
Cν = 1, the PDF is simply slightly shifted away from the
zero mean curvature axis y = −x that is a symmetry axis
of the PDF for ϕ = 0.5, Cν = 1 and for Cν = 128, 1/128;
they are also not very different. One should, however, note
that, in the case Cν = 128, the part of the PDF that corre-
sponds to a positive Gaussian curvature corresponds to caps
of the minority phase (the least viscous) protruding in the
majority phase while, for Cν = 1/128, it corresponds to caps
of the majority phase (the least viscous) protruding in the
minority phase.

For a smaller volume fraction ϕ = 0.35, if both phases
share the same viscosity there is no significant departure from
the shape presented for ϕ = 0.45. The shift from the symme-
try axis is simply more pronounced. When the minority phase
is significantly less viscous (Cν = 128), a significant part of
the interface corresponds to a region of positive Gaussian
curvature. Hence, as can be seen in Fig. 1, an important part
of the minority phase consists of protrusions in the majority
phase that do not participate to the connectivity of the mi-
nority phase cluster. In the case where Cν = 1/128, the PDF
maximum is close to the κ2 = 0 axis that corresponds to the
cylindrical part of the interface (and zero Gaussian curvature).
This corresponds to the very thin filament that can be seen for
instance in in Fig. 8(d).

In Fig. 4 the evolution of the average rescaled mean and
Gaussian curvatures are plotted as a function of the char-
acteristic length during coarsening for ϕ = 0.40, different
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FIG. 4. Evolution as a function of the characteristic length of the rescaled mean curvature (left) and genius (right) for the same volume
fraction ϕ = 0.40 and different values of the viscosity ratios. For each value of the viscosity ratio two simulations are represented with different
initial conditions and different initial values of the genius and average mean curvature.

flow conditions (each line type corresponds to a given flow
condition), and different initial conditions (this is made clear
by the fact that the lines start at different values of lκm and
g). In both cases, after a transient that corresponds roughly to
doubling l , a stationary regime is reached and the limit values
of the average Gaussian and mean curvatures are functions of
the flow parameters and volume fraction and are independent
of the initial condition [33]. This convergence allows one to
compute the rescaled mean curvature and genius as functions
of the viscosity contrast and the volume fraction. The results
are summarized in Fig. 5, for the range of parameters con-
sidered here. The mean curvature is very well approximated
by a plane. The rescaled genius plot shows that the center of
symmetry ϕ = 0.5, Cν = 1 is not an extremum but a saddle
point. However, despite the fact that the genius is a topological
invariant, interpreting this plot in terms of connectivity of the
microstructure is difficult.

In order to actually quantify the effects of the control pa-
rameters on the connectivity, we have computed the electrical
conductance of the microstructure assuming that one phase is

0.4
0.5

0.6

−5

0

5

−0.1
0

0.1

κm

0.40.50.6

−5
0

5

0.1

0.2

g

er
ro

r

|κm|

x/10

er
ro

r

|g|

x/10

ϕ
log10(Cν)

κm

ϕ
log10(Cν)

g

FIG. 5. Plot of the rescaled genius and mean curvature as a
function of the volume fraction of the phase 1 and the log of the
viscosity contrast. The surfaces correspond to the polynomial fit of
the computed values. The bottom plot corresponds to the absolute
difference between the computed values and the interpolating surface
that is represented. One can see that the relative error is of the order
of 1/10 in both cases.

conducting (with conductivity 1) while the other is isolating
(with conductivity ≈0); the values of the domain size are
chosen so that the conductance of a sample filled with the
conducting phase is 1 (details are given in the Appendices). In
Fig. 6(a) the evolution of the conductance of the microstruc-
ture as a function of l is plotted for two values of the viscosity
contrast and a value of the volume fraction of the conducting
phase ϕ = 0.35. The plot indicates that the conductance is
converging toward a limiting value during the coarsening and
that the higher conductance is reached by the more viscous
phase.

This is confirmed by the plot of the conductance as a
function of the viscosity contrast Cν = ν/1/ν2, where the
phase 1 is conducting while the phase 2 is isolating for
ϕ = 0.3 and ϕ = 0.4 in Fig. 7. One can see that, when
decreasing the contrast of the minority phase (which is con-
ducting), there is first a region for which the conductance is
not changing a lot while the morphology is changing as is
seen on the PDFs of the curvatures or on the evolution of the
average mean curvature. Then when the viscosity is decreased
further, the conductance decreases significantly. Since the
conductance of the phase 1 cannot be larger than its volume
fraction (with the conventions used here), the existence of the
aforementioned plateau is obvious. Our simulations did not
allow us to explore systematically the effects of varying the
volume fraction on the position of the threshold.

Finally in Fig. 7 we have plotted the conductance G as a
function of ϕ for different values of the viscosity contrast.
It is clear that, for a given value of Cν , there is a threshold
of the volume fraction below which the conductance of the
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FIG. 6. Conductance of the minority phase during the coarsening
for two values of the viscosity contrast and two values of the volume
fraction.
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FIG. 7. Left: Conductance of the sample as a function of the
logarithm of the viscosity contrast for two values of the volume
fraction ϕ. Right: Conductance as a function of the volume fraction
when the viscosity of the conducting phase is 128, 1, and 1/128 times
the viscosity of the isolating phase. The straight line corresponds to
G = ϕ.

minority phase goes to zero. This implies that the microstruc-
ture is no longer bicontinuous and that the coarsening regime
is no longer a self-similar viscous regime. The computed
conductances when approaching this transition point are de-
creasing linearly a function of the control parameter [either
ϕ or log(Cν )] down to very small values of the conductance.
This indicates that it is likely that the transition from the
bicontinuous phase to the inclusion in a matrix phase is
continuous: There is no threshold parameter (e.g., ϕ for a
given Cν) above which there exists a bicontinuous phase with
a finite conductance and below which the conductance goes
to zero. As a result the limits of the self-similar regime should
correspond to the domain where G(�,Cν ) = 0, which can be
extrapolated using the curves in Fig. 7. However, such an

(a) (b)

(c) (d)

FIG. 8. (a), (b) Snapshot of the microstructure corresponding to
(a) and (d) in Fig. 9. Panels (c) and (d) correspond to (e) and (h) in
Fig. 9. In all snapshots a portion of the domain of size proportional
to the characteristic length scale l is shown.
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FIG. 9. (a)–(d) Evolution of the PDFs of curvatures for ϕ =
0.735 when the minority phase is 128 times less viscous than the
majority phase. The PDFs are initially centered relatively close to
the κ1 = −κ2 line. The evolution is such that it is moving toward the
line κ1 = κ2 < 0 that corresponds to inclusions of the minority phase
in the majority phase. (e)–(h) The same evolution when the minority
phase is the more viscous one. There is a clear evolution toward a
distribution centered close to the κ1 = −κ2 line (that corresponds to
κm = 0) that appears to be almost unaffected by the changes in l .

extrapolation is likely to give unphysical results when ϕ is
close to 1 or to zero and must be taken with care.

Now we give a short description of the transition from a
bicontinuous microstructure toward an inclusion in the matrix
pattern. To this purpose we consider the evolution of an
initially bicontinuous pattern when the volume fraction of
the minority phase is 0.265. For this value of the volume
fraction, there is a self-similar coarsening regime when the
minority phase is 128 times more viscous than the majority
phase, as can be seen in Figs. 9 and 8. Starting from a
microstructure obtained in this regime we let the system
evolve with a minority phase that is 128 times less viscous
than the majority phase. Snapshots of the microstructure and
of the PDFs of the principal curvatures during their evolution
are represented in Figs. 9 and 8. For the sake of readability,
the snapshots of the microstructure have been taken using
portions of the simulation domain of varying size proportional
to the characteristic length l . Both the snapshots and the PDFs
show that, starting from a bicontinuous pattern that consists
of capillary bridges linked in a network, the microstructure
evolves toward a pattern where there are less capillary bridges
and more spherical caps on the microstructure. This evolution
eventually leads to the formation of multiple inclusions of
the minority phase isolated in the majority phase. In Fig. 6
the changes in the conductance of the microstructure during
this evolution are plotted and there is a linear decrease of G
with L until G reaches zero, which indicates that the minority
phase is no longer percolating. It should also be noted that,
during the time evolution from a bicontinuous structure to an
inclusion in a matrix pattern, neither the average mean curva-
ture nor the average Gaussian curvature (see Fig. 10) present
a discontinuity. They vary smoothly: When the self-similar
regime is unstable, the mean curvature and the Gaussian
curvature decrease linearly with time. When considering the
two curves it is impossible to detect the loss of continuity of
the microstructure. Hence, since the genius is a topological
invariant, this confirms that the evolution of the network is
continuous in time in the large system size limit.

013116-6



KINETICS OF COARSENING HAVE DRAMATIC EFFECTS … PHYSICAL REVIEW E 100, 013116 (2019)

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0 20 40 60 80
−0.1

0

0.1

0.2

0 20 40 60 80

l
κ

m
/
S

ϕ=0.265 Cν=128
ϕ=0.265 Cν=1/128

ϕ=0.4,Cν=1/128

g
=

l2
(1

−
κ

g
/
(4

π
))

/
S

FIG. 10. Evolution with characteristic length of the mean curvature (left) and rescaled genius (right) for the same volume fraction ϕ =
0.265 (and ϕ = 0.4, Cν = 1/128 as a visual reference) and different values of the viscosity ratios. The values interpolated from the fit of the
self-similar regime close to the perfectly symmetric point are κm = −0.18, −0.10, g = 0.20, 0.06 when Cν = 128, 1/128.

These results on both the self-similar regime and the loss of
self-similarity can be understood using an argument inspired
by the work of [19]. Indeed, the coarsening of a bicontinuous
microstructure consists of the successive breakup of capillary
bridges (of the minority phase if φ differs significantly from
0.5). Once a capillary bridge is broken it retracts and the fluid
that was present in it is spread in the remaining capillary
bridges, making them thicker and therefore delaying their
breakup. Such a process is possible only if the retraction time
of the filament is small enough when compared to the breakup
time of the remaining filaments.

In [19], the authors show that the retraction time of a
filament of a fluid of viscosity νfil in a composite matrix
consisting of the same fluid as the filament and a comple-
mentary phase with viscosity νcomp is a linear combination
of νcomp and νfil. They also show that, when there is a strong
viscosity contrast between the phases, the filament breakup
time is proportional to

√
νcompνfil when nucomp � νfil and to

νfil when nufil � νcomp. As a result, the retraction time of
a viscous filament is comparable to its breakup time, while
the retraction time of a fluid filament is much larger than its
breakup time [34].

This allows us, for instance, to give a rationale to the in-
creased presence of spherical caps in the microstructure when
the minority phase is made less viscous than the majority
phase. Indeed, the retraction time of a broken filament (with
spherical caps) is inversely proportional to the rate of disap-
pearance of these spherical caps while the capillary breakup
time is inversely proportional to the rate of appearance of
these broken filaments (spherical caps). Therefore, when the
viscosity of the minority phase is increased, the number of
spherical caps in the microstructure which is the ratio of these
two rates is increased (at dominant order in the limit of large
systems).

This also gives a good understanding of the loss of self-
similarity when the viscosity of the minority phase is de-
creased. Indeed, the self-similar regime is possible if there
is a balance between the flux of mass that goes into the
broken filament due to capillary breakup and the flux of
mass that goes from the broken filaments to the network
of unbroken filaments of the minority phase that make the
minority phase continuous. These two fluxes are respectively
inversely proportional to the capillary breakup time and the
retraction time. If the latter is not large enough, such a balance

cannot be achieved by the system and loss of self-similarity is
observed. With such a process, one would expect to observe a
progressive decrease of the conductivity of the pattern as can
be seen in Fig. 6.

Hence the effects of the changes in the flow parameters on
the microstructure are related to their effects on the capillary
bridge breakup and capillary bridge retraction characteristic
times.

IV. CONCLUSION

We have studied the evolution of the microstructure of
a biphasic fluid under the action of surface tension and
have focused our work on the effects of considering volume
fractions that differ significantly from 0.5 and fluids with
different viscosities. From our simulations, it appears that the
self-similar regime is robust to departure from the perfectly
symmetric point for which it had already been observed. It
must be noted that for a wide range of parameters and a wide
range of initial conditions, it is an attractor. However, when
the volume fraction differs significantly from 0.5, the initially
bicontinuous microstructure evolves under the action of flow
in a non-self-similar manner and eventually becomes a set
of inclusions in a matrix. A few examples of this transition
were numerically studied and, in all cases, the transition was
not accompanied by abrupt transition of quantitative observ-
ables such as the average mean or Gaussian curvature or the
conductance of one phase. The fact that when the minority
phase is less viscous than the majority phase this transition is
favored can be interpreted in the light of the direct observation
of the morphological characteristics of the microstructure. It
is a consequence of a relative increase of the retraction time
of liquid filament after the breakup of capillary bridges when
compared to the characteristic time for breakup. This is in line
with the mechanism initially proposed by Bouttes [19] in the
light of experiments: The loss of stability of the self-similar
coarsening regime when the viscosity of the minority phase
is decreased is due to the fact that the time for retraction of a
filament is becoming much larger than the characteristic time
for capillary bridges.

More importantly, we have shown that the kinetics of
coarsening have a dramatic effect on the microstructure and in
the case of viscous coarsening we have been able to show their
importance. In addition, our results indicate that the perfectly
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symmetric regime (where exchanging phases does not change
the problem) is a very peculiar point due to symmetries, and
that considering more general situations gives more insight on
the pattern forming process.
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APPENDIX A: RESCALED MEAN CURVATURE
AND GENIUS OF A MONODISPERSE

SUSPENSION OF INCLUSIONS

In the main part of the manuscript the genius and average
mean curvature are used extensively and they are supposed to
measure to some extent the morphology of the microstructure.
While for the complex microtructures presented here they
come from the integration of the curvatures over complex
surfaces, in the case of a monodisperse set of inclusions in a
matrix, they are directly related to the volume fraction of one
phase and can be easily computed. Here we briefly give their
values after recalling the steps leading to the values. To this
purpose we consider a monodisperse suspension of spheres
that fill the space with a volume fraction �. This situation is
reached, for instance, when space is filled with cubes of side
1 that contain, each, a sphere of radius r. The radius of the
sphere is then such that

4
3πr3 = �, (A1)

which implies

r =
(

3�

4π

)1/3

. (A2)

Using the definition of the characteristic length used here, we
have that

l = 1

4πr2
= (

36π�2
)−1/3

. (A3)

The rescaled average mean curvature is then (up to sign
change depending on the convention)

l〈κm〉 = l
2

r
= 2

3�
, (A4)

where � is the volume fraction occupied by the spheres. For
the genius, the same reasoning applies and gives

g = (1 − N ), (A5)

where N is the number of elementary cubes. From this, the
rescaled genius is, in the limit of large N ,

gl3/V = 1 − N

N
l3 ≈ − 1

36π�2
. (A6)

For the values used here we have typical values of the rescaled
genius and mean curvature that are summarized in Table I.

TABLE I. Summary of the rescaled mean curvature and genius
for different values of the volume fraction, in the case of a monodis-
perse suspension of spheres. Higher values of � > 0.523 are not
considered since they would correspond to overlapping spheres.

� 0.25 0.3 0.35 0.4 0.45 0.5
l〈κm〉 −2.7 −2.2 −1.9 −1.7 −1.5 −1.3
−gl3/V 0.14 0.1 0.07 0.055 0.044 0.035

APPENDIX B: MEASURE OF THE CONDUCTIVITY
OF THE SYSTEM

In order to measure the connectivity of the microstructure,
i.e., of one of the phases, one can measure the conductivity of
the microstructure with one phase with a conductance of 1 and
the other a conductance of g << 1. This computation, with a
sufficiently small g, will give a measure of the section of the
continuous paths of the conducting phase that go through the
sample and therefore of the connectivity of the sample. This
is what has been measured here by solving the linear PDE for
a given microstructure (the size of the microstructure was set
to 1 in all three directions) c(x):

0 = ∇(G(c)∇V ), (B1)

with G(c) = 1 if c (1 − c) > 0.5 and G(c) = g if c (1 − c) <

0.5 in order to suppress the possible effects of the exponential
tails of the interfaces. The boundary conditions are V (i = L =
1) = 1 and V (i = 0) = 0 and periodic at the other faces of the
sample where i is either x or y or z. Once V is computed (using
a method described below), the flux along the i direction is

�i =
∫

j

∫
k

g∂iV, (B2)

where j and k are the two remaining indices once i is set.
The results as expected from the isotropy of the sample are
independent of the choice of i. Therefore, the average value of
the flux � = (�i�i )/3 can be used to define the conductance
G = �. In such a system, one can easily see that (conducting
tubes along the gradient of V which is anisotropic) the max-
imal conductance (conducting tubes along the gradient of V
which is anisotropic) is equal to the volume fraction of the
conducting phase ϕ.

When computing V and the conductance of the microstruc-
ture, the description of the interfaces is of little interest;
therefore, a small undersampling, that is using one point out
of four in each direction, was used (using one point out of
eight did not affect results in all test cases considered). As a
result the system size used when solving the discrete version
of Eq. (B1) was 2563 which is large.

The solution was computed using a discretized damped
wave equation with a properly chosen damping λ = 0.005
and varying mass density to ensure fast convergence toward
the equilibrium and a constant wave equation in domains
independent of the phase:

∂ttV = 1

G(c)
[∇(G(c)∇V )] − λ∂tV. (B3)

Simulations showed that, after 104 iteration, a very good
convergence had been reached: The residuals were extremely
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small and the value of � that was computed was nearly
independent of the position where it is computed. This was in
stark contrast with results obtained using Gauss Seidel over-
relaxation for which, after a comparable number of iterations,
the same value of the error (using L∞ norm) was reached
but where significant long wavelength variations of the flux
ϕ were present. An estimate of λ in the case of a continuous
one dimensional system is of the order of magnitude of c/L,
where c is the wave speed and L is the size of the system:
Considering higher values of λ would lead to a mode whose
amplitude decreases with a rate much lower than λ.

The algorithm, which is straightforward, was implemented
using GPU acceleration and double precision and solutions
of one given problem of dimension 2563 were reached within
approximately 40 s (using a NVIDIA Tesla P100 Card).

APPENDIX C: INITIAL CONDITION

The initial condition was computed with the following two
step algorithm.

(a) First the computation domain was filled with oblates
ellipsoids (that could overlap) of one phase until the desired
mean concentration of one phase was reached. The choice
of prolate ellipsoids allows one to reach low volume fraction
while keeping a bicontinuous structure.

(b) Second the system was evolved for a relatively short
time that corresponds to a significant increase in l (typically
by a factor of 2) with a different kind of kinetics: Either purely
diffusive or with a Navier Stokes flow and a viscosity contrast
that was (or was not) the one to be used in the main run.

A given initial condition was used for different simulations
using different parameter values for the flow.
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