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a b s t r a c t

The Euler–Lagrange equation of the phase-field crystal (PFC) model has been solved under appropriate

boundary conditions to obtain the equilibrium free energy of the body centered cubic crystal–liquid

interface for 18 orientations at various reduced temperatures in the range EA ½0,0:5�. While the

maximum free energy corresponds to the f100g orientation for all E values, the minimum is realized by

the f111g direction for smaller Eðo0:13Þ, and by the f211g orientation for higher E. The predicted

dependence on the reduced temperature is consistent with the respective mean field critical exponent.

The results are fitted with an eight-term Kubic harmonic series, and are used to create stereographic

plots displaying the anisotropy of the interface free energy. We have also derived the corresponding

Wulff shapes that vary with increasing E from sphere to a polyhedral form that differs from the

rhombo-dodecahedron obtained previously by growing a bcc seed until reaching equilibrium with the

remaining liquid.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The anisotropy of the crystal–liquid interface free energy (ghkl)
reflects differences in the interface structure for different orienta-
tions, and may play an essential role in determining the mor-
phology of growing crystals [1]. Anisotropy is needed for dendritic
structures, and apparently a detailed knowledge on anisotropy is
required to fully understand the growth morphology [2]. Experi-
mentally, the anisotropy of the interface free energy can be
deduced from the shape of liquid inclusions in a solid matrix
(though, one needs to be careful to relax all the stresses before
converting the shape into anisotropy) [3–6]. Anisotropy has also
been evaluated assuming that the dendrite growth directions
correspond to the minima of the stiffness, and matching the
minima of an appropriately parameterized interface stiffness
function and the growth directions of dendrites observed in thin
coatings [7]. Other methods evaluate the interface free energy and
its anisotropy from molecular dynamics simulations [8–12] using
empirical model potentials such as the embedded atom potential.
Whether experiment [5–7] or atomistic simulation [8–12], the
anisotropic interface free energy data are usually fitted by the
cubic harmonic expansion series introduced by Fehlner and Vosko

[13]. Often only a few low index orientations are considered
(typically f100g, f110g, and f111g), and a second-order cubic
harmonic expansion is employed [5–9].

Theoretical predictions for the anisotropy of the crystal–liquid
interface in 3D emerge mostly from the early broken-bond
models for the fcc, bcc, hcp, and dc structures [14–16] (utilizing
former results for the crystal–vapor interfaces [17–21]), from the
classical density functional theory [22,23], and recently for the fcc
and bcc structures from the phase-field crystal (PFC) approach
[23,24] (a simple dynamical density functional theory [25–27]).
Some analytical predictions based on the approximations of the
PFC model are also available: a multi-scale analysis has been used
by Wu and Karma [28] to evaluate the anisotropy of the inter-
facial fee energy near the critical point. They have approximated
the equation of motion of the PFC model by a set of coupled
equations that describe the time evolution of the amplitudes of
the dominant density waves. Analyzing the stationary solution,
they have concluded that the anisotropy is independent of the
reduced temperature, a finding that accords with the results of
Majaniemi and Provatas [29], who have used the local volume
averaging method to obtain amplitude equations for liquid–solid
interfaces that are broad relative to the periodicity of the crystal-
line phase. In these studies, the independence of the anisotropy
from the reduced temperature follows from approximations,
which lead to weakly fourth-order amplitude theories of the
Ginzburg–Landau type, from which all material parameters
can be scaled out [28,29]. As a result, the anisotropy of the
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solid–liquid interface free energy depends only on the crystal
structure. This independence of the anisotropy from the reduced
temperature is, however, unphysical, as the anisotropy must
vanish, when the correlation length (the width of the solid–liquid
interface) diverges at the critical point, as indeed suggested by the
equilibrium shapes of finite size clusters from 2D PFC simulations
[30–32]. It is, however, important to test the anisotropy of the
solid–liquid interface free energy by equilibrium simulations for
the flat interface in 3D, which is free from size effects, since the
latter is known to influence the equilibrium shape considerably
[21,30].

Accordingly, in this paper, we are going to demonstrate that
the free energy of the flat bcc–liquid interface depends not only
on the orientation but also on the reduced temperature. We map
out the orientation dependence in detail at several reduced
temperatures, then fit the results with an expression based on
an eight-term Kubic harmonic expansion [13,33,34] to represent
the orientation dependence in a closed form, and determine the
respective Wulff shapes, a mathematical construction [17,35] to
which the equilibrium shape, minimizing the interfacial contribu-
tion to the cluster free energy for a given volume, tends for large
particle sizes.

Fig. 1. Stereographic plots of the orientation dependence of the bcc–liquid interface free energy as a function of reduced temperature. The contour lines characterize the

fitted Kubic harmonic expression. The 18 directions for which the interface free energy has been evaluated are shown in panel (a) and as inverted color dots in the other

panels. Dimensionless ghkl values are shown, which has to be multiplied by the following factors: (b): 10�4, (c)–(f): 10�3. For panels (b)–(f), the reduced temperatures are

E¼ 0:1, 0.2, 0.3, 0.3748 and 0.5, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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2. The PFC model

In the PFC approach, the local state of matter is characterized
by the time-averaged particle density, r. The dimensionless free
energy of the inhomogeneous (crystalþfluid) system taken rela-
tive to a homogeneous reference fluid (of density rL,ref ) reads as

DF ¼

Z
dr

c
2
½�Eþð1þr2

Þ
2
�cþ

c4

4

( )
ð1Þ

where cpðr�rL,ref Þ=rL,ref is the scaled density difference. The
reduced temperature E can be connected to physical properties
such as the bulk moduli of the fluid and crystalline phases at the
reference density and temperature. Eq. (1) can be deduced [26,27]
from the perturbative density functional theory of Ramakrishnan
and Yussouff [36]. The solutions that extremize the free energy
functional can be obtained by solving the respective Euler–
Lagrange equation (ELE) [31]

dDF

dc
¼
dDF

dc

����
c0

ð2Þ

where c0 is the reduced particle density of the reference state,
while a periodic boundary condition is assumed at the borders.
Inserting the free energy functional into Eq. (2), rearranging then
the terms, one obtains

½�Eþð1þr2
Þ
2
�ðc�c0Þ ¼ �ðc

3
�c3

0Þ ð3Þ

The ELE has been solved here numerically using a semi-spectral
successive approximation scheme combined with the operator-
splitting method [31,37]. The computations have been performed
on 33 GPU units of total theoretical maximum computation rate
of � 34:8 TFLOPS.

The free energy of the equilibrium solid–liquid interface has been
determined in several steps: First, the equilibrium densities have
been determined for the crystalline and liquid phases using the
ELE method [31]. Then bcc–liquid–bcc sandwiches of equilibrium
densities and of cross-section commensurable with the actual
(hkl) face were created on which the ELE is solved using periodic
boundary conditions. Next, the solution is inserted into the
expression of grand-potential density and integrated (the con-
tributions emerge exclusively from the interfacial regions), divid-
ing then the result by twice the cross-sectional area, delivering
the bcc–liquid interface free energy, ghkl, for the hkl orientation.

3. Results and discussion

First, we have determined ghkl for the 18 orientations shown in
Fig. 1(a) for several reduced temperatures. Next, we have fitted an
eight-term expression based on the Kubic harmonic expansion by
Fehlner and Vosko [13] (Table 1) to the data (see the expansion
coefficients and their standard deviation in Table 2).

The respective bcc–liquid interface free energy distributions
are displayed as stereographic contour plots Fig. 1. Projection is
applied from the north pole of the unit sphere to the perpendi-
cular plane, touching the sphere at the south pole, which coin-
cides with the 100 direction on the maps. Only the geodesic
triangle spanned by the directions 100, 110 and 111 is shown,
because of symmetry properties of the bcc structure. At low
Eðo0:13Þ the minimum and maximum directions are f111g and
f100g, respectively. For larger E the maximum direction remains
the same, however, the minimum direction is f211g. The interface
free energy for these low index directions are shown as a function
of reduced temperature in Fig. 2. In agreement with the 2D results
[31], the bcc–liquid data are consistent with the known mean-
field critical exponent for the interface free energy (1.5). It is also
clear that the anisotropy disappears as the critical point (E¼ 0) is
approached. For comparison, we have plotted ghkl (hkl¼100, 110,
and 111) for the fcc–liquid interface at E¼ 0:5, 0.65, and 0.8 from
Ref. [23].

Remarkably, the results for the two crystal structures are quite
close. This is in accord with previous findings based on PFC
nucleation data at E¼ 0:3748 [31], and with predictions from
the nearest-neighbor broken-bond theory [14,15]. However, the
closeness of the fcc–liquid and bcc–liquid interface free energies
contradicts molecular dynamics simulations, which find that the
bcc–liquid interface free energy is about 30% smaller than the
data for the fcc–liquid interface [8–10]. A possible resolution of
this contradiction could be that the MD simulations refer to
metallic systems that would correspond to small E values in the
PFC model (where the interface is diffuse), whereas the PFC data
of Ref. [23] for the fcc structure refer to very high E values (where
the interface is sharp and faceted, as in the case of the nearest-
neighbor broken-bond model).

In approximating the Wulff shapes, first we have evaluated it
directly from the 18 ghkl values (see Fig. 3). Accordingly, all physical
information available for the system are accurately incorporated into
the Wulff construction. We note that a small number of ghkl might
be sufficient to describe a Wulff shape fully if the anisotropy is high
(i.e. in the case of faceted crystals corresponding to high E). However,
the results are visually much less appealing if the anisotropy is low

Table 1
Terms Kj,k of the Kubic harmonic expansion with a normalization by Fehlner and Vosko [13].

K0,0 ¼ 1

K4,1 ¼
1

4

ffiffiffiffiffiffi
21
p
½5Q�3�

K6,1 ¼
1

8

ffiffiffiffiffiffi
13

2

r
½462Sþ21Q�17�

K8,2 ¼
1

32

ffiffiffiffiffiffiffiffiffi
561
p

½65Q2
�208S�94Qþ33�

K10,2 ¼
1
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ffiffiffiffiffiffiffiffiffi
455

2

r
½7106QSþ187Q2

�3190S�264Qþ85�

K12,2 ¼
3

128

ffiffiffiffiffiffi
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41
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½2 704 156S2

þ352 716QSþ4199Q2
�232 492S�6526Qþ2423�

K12,3 ¼
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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½1025Q3

�16 212S2
�8532QS�2298Q2

þ4884Sþ1677Q�396�

K14,3 ¼
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51 765
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½1311Q2Sþð437=18ÞQ3
�ð6992=3ÞS2

�ð7866=5ÞQS�ð1577=30ÞQ2
þð1501=3ÞSþð1109=30ÞQ�17=2�

Q ¼ n4
x þn4
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z , S¼ n2

x n2
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P

Cj,kKj,k and n¼ ðnx ,ny ,nzÞ is the unit direction vector
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(non-faceted crystals occurring at low E), since even the surfaces that
should be smooth and rounded are covered by polygons [see e.g.
Fig. 3(a), where a sphere is expected]. This is so, even if we use ghkl

data for 18 independent orientations, a set that is far more
numerous than usually obtained from experiments or molecular
dynamics simulations.

This problem does not occur if we use the Kubic harmonic
expression, as for any direction we may deduce ghkl. This comes,
however, at a price. The ghkl data obtained from the fitted Kubic
harmonic expression relies on eight expansion coefficients Cj,k

obtained from a fitting procedure, which are thus subject to
errors. These errors are small if the anisotropy is low, but they

Table 2
Coefficients for the eight-term Kubic harmonic expansion normalized by the best fit isotropic contribution g0ð ¼ C0,0Þ, together with their standard deviation.

E 0.1 0.2 0.275 0.3 0.3748 0.5

g0 7.494735E�0474.40E�08 2.49173E�0371.16E�06 4.12683E�0375.59E�06 4.6828E�0377.49E�06 6.3083E�0371.44E�05 8.7469E�0372.87E�05

C4,1=g0 1.5373E�0275.37E�05 2.0656E�0274.24E�04 2.671E�0271.24E�03 2.797E�0271.46E�03 3.080E�0272.08E�03 3.499E�0273.00E�03

C6,1=g0 �4.9062E�0375.96E�05 �1.135E�0374.71E�04 7.57E�0371.37E�03 1.020E�0271.62E�03 1.508E�0272.31E�03 1.793E�0273.33E�03

C8,2=g0 �5.53E�0475.38E�05 1.935E�0374.25E�04 4.73E�0371.24E�03 5.64E�0371.47E�03 7.30E�0372.08E�03 1.167E�0273.00E�03

C10,2=g0 �2.383E�0474.74E�05 �4.497E�0373.74E�04 �9.91E�0371.09E�03 �1.125E�0271.29E�03 �1.306E�0271.83E�03 �1.890E�0272.64E�03

C12,2=g0 �7.92E�0575.08E�05 �2.208E�0374.02E�04 �4.14E�0371.38E�03 �4.30E�0371.38E�03 �4.795E�0371.97E�03 �5.17E�0372.84E�03

C12,3=g0 �1.29E�0574.63E�05 �1.498E�0373.66E�04 �2.90E�0371.07E�03 �3.19E�0371.26E�03 �3.79E�0371.79E�03 �6.86E�0372.58E�03

C14,3=g0 2.182E�0475.05E�05 2.733E�0373.99E�04 4.21E�0371.16E�03 4.54E�0371.38E�03 5.26E�0371.96E�03 1.074E�0272.82E�03

Fig. 2. (a) Bcc–liquid interface free energy (full symbols) vs. reduced temperature for a few low index orientations as predicted by the PFC model. (b) Interface free energy

plotted vs. E3=2. Note that the results are consistent with the mean-field critical exponent of the interface free energy. For comparison, data for the fcc–liquid interface from

Ref. [23] are also shown (empty symbols). In contrast to the molecular dynamics results [8–10], the data for the fcc and bcc structures fall rather close to each other.

Fig. 3. Approximate Wulff shapes evaluated directly from the 18 ghkl data computed at the reduced temperatures E¼ 0:0, 0.1, 0.2, 0.3, 0.3748, and 0.5, corresponding to

panels (a)–(f), respectively.
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may be more significant if the anisotropy is high. Cusps in the
polar plot of the interface free energy (g-plot) might be especially
problematic. These are the most important orientations, since
often the g value in these directions determines the whole Wulff
shape. Unfortunately, the fit is expected to be the least accurate in
the deepest cusps.

The approximate Wulff shapes emerging from this approach
are displayed in Fig. 4. Indeed, the behavior for small E is much
improved, and we still obtain a fair reproduction for large
anisotropies. This is supported by the fact that only small changes
are seen if we merge the dense cover of orientations from the
fitted Kubic harmonic expression with the originally computed
ghkl data. However, still there are differences, which indicate that
a large number of ghkl is needed to have a faithful representation
of the orientation dependence of the interface free energy.

The Wulff shape changes from sphere at E¼ 0 to a polyhedral
shape at large E values. The latter shape differs considerably from
the rhombo-dodecahedral form found by solving the PFC equation
of motion for the growth of a bcc seed until reaching equilibrium
with the remaining liquid [31,38]. The rhombo-dodecahedral
shape obtained so (which has also been predicted by the
nearest-neighbor broken-bond model as the Wulff shape for
the bcc structure [14,17,35]) might be either the result of finite
size effect or simply a growth form. Interestingly, the Wulff
shapes found at large E do not resemble the shapes observed
experimentally for 3He [39] or the equilibrium crystal shapes in
vapor for metals [40]. In our study, the dominant faces are f110g
and f211g. Apparently, the f100g faces have decreasing impor-
tance with increasing E, whereas the f111g face does not show up
at all. These differences in the Wulff shape may be attributed to
the fact that the Wulff shape is known to be sensitive to the
interaction potential [18–20]. A recent work suggests that in the
PFC model the effective pair-potential has a repulsive peak at
� r0

ffiffiffi
2
p

, where r0 is the radius corresponding to the main
minimum of the potential [41], and this effective potential differs
from the potentials expected for noble gases and metals. Further
work is needed, however, to clarify whether the present Wulff

shapes are indeed consistent with such (Dzugutov-type [42])
interaction potential.

4. Summary

We have mapped the orientation and temperature dependence
of the bcc–liquid interface free energy ghkl in the PFC model. As in
2D, the dependence of ghkl on the reduced temperature is
consistent with the respective mean field exponent. A Kubic
harmonic fit has been performed to represent the anisotropy.
With increasing reduced temperature, the corresponding Wulff
shape changes from sphere (at the critical point, E¼ 0) to a
polyhedral shape at large E that differs considerably from
rhombo-dodecahedral, observed in dynamic simulations based
on the PFC equation of motion.
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