Heterogeneous nucleation

Phase field benchmark problems for nucleation

W. Wu, D. Montiel, J.E. Guyer, P.W. Voorhees, Warren JA, D. Wheeler, L Gránásy, Pusztai T, O.G. Heinonen

We present nucleation phase field model benchmark problems, expanding on our previous benchmark problems on diffusion, precipitation, dendritic growth, linear elasticity, fluid flow and electrochemistry. Nucleation is the process in which either a new thermodynamic phase or a new structure is created, such as solidification from the melt, or self-assembly of particulates. Based on where the nucleation occurs, it can be divided into two main categories: homogeneous nucleation and heterogeneous nucleation. In the first nucleation benchmark problem, we focus on homogeneous nucleation for both single seed under different initial conditions and multiple seeds. The second nucleation benchmark problem focuses on athermal heterogeneous nucleation and nucleation behavior near the free growth limit with different undercooling driving forces.

Topics: Heterogeneous nucleation

Investigating Nucleation Using the Phase-Field Method

Frigyes Podmaniczky1, Gyula Tóth2, Tamás Pusztai1, László Gránásy1,3

1Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
2Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, U.K.
3BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom

The first order phase transitions, like freezing of liquids, melting of solids, phase separation in alloys, vapor condensation, etc., start with nucleation, a process in which internal fluctuations of the parent phase lead to formation of small seeds of the new phase. Owing to different size dependence of (negative) volumetric and (positive) interfacial contributions to work of formation of such seeds, there is a critical size, at which the work of formation shows a maximum. Seeds that are smaller than the critical one decay with a high probability, while the larger ones have a good chance to grow further and reach a macroscopic size. Putting it in another way, to form the bulk new phase, the system needs to pass a thermodynamic barrier via thermal fluctuations. When the fluctuations of the parent phase alone lead to transition, the process is called homogeneous nucleation. Such a homogeneous process is, however, scarcely seen and requires very specific conditions in nature or in the laboratory. Usually, the parent phase resides in a container and/or it incorporates floating heterogeneities (solid particles, droplets, etc.). The respective foreign surfaces lead to ordering of the adjacent liquid layers, which in turn may assist the formation of the seeds, a process termed heterogeneous nucleation. Herein, we review how the phase-field techniques contributed to the understanding of various aspects of crystal nucleation in undercooled melts, and its role in microstructure evolution. We recall results achieved using both conventional phase-field techniques that rely on spatially averaged (coarse grained) order parameters in capturing the phase transition, as well as molecular scale phase-field approaches that employ time averaged fields, as happens in the classical density functional theories, including the recently developed phase-field crystal models.

Topics: Heterogeneous nucleation

Recent Developments in Modeling Heteroepitaxy/Heterogeneous Nucleation by Dynamical Density Functional Theory

Frigyes Podmaniczky1, Gyula Tóth2, György Tegze1, László Gránásy1,3

1Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
2Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, U.K.
3BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom

Crystallization of supersaturated liquids usually starts by epitaxial growth or by heterogeneous nucleation on foreign surfaces. Herein, we review recent advances made in modeling heteroepitaxy and heterogeneous nucleation on flat/modulated surfaces and nanoparticles within the framework of a simple dynamical density functional theory, known as the phase-field crystal model. It will be shown that the contact angle and the nucleation barrier are nonmonotonous functions of the lattice mismatch between the substrate and the crystalline phase. In continuous cooling studies for substrates with lattice mismatch, we recover qualitatively the Matthews–Blakeslee mechanism of stress release via the misfit dislocations. The simulations performed for particle-induced freezing will be confronted with recent analytical results, exploring thus the validity range of the latter. It will be demonstrated that time-dependent studies are essential, as investigations based on equilibrium properties often cannot identify the preferred nucleation pathways. Modeling of these phenomena is essential for designing materials on the basis of controlled nucleation and/or nano-patterning.

Topics: Heterogeneous nucleation

Phase-Field Modeling of Solidification in Light-Metal Matrix Nanocomposites

Tamás Pusztai1, László Rátkai1, Attila Szállás1, László Gránásy1,2

1Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
2BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom

The quantitative phase-field approach has been adapted to model solidification in the presence of Metal Matrix Nanocomposites (MMNCs) in a single-component liquid. Nanoparticles of fixedsize and shape are represented by additional fields. The corresponding equations of motion are assumed to ensure relaxation dynamics, and can be supplemented by random forces (realizing Brownian motion) or external fields. The nanoparticles are characterized by two model parameters: their mobility and the contact angle they realize with the solid-liquid interface. We investigate the question how grain size distribution can be influenced by heterogeneous nucleation on the nanoparticles and by the front-particle interaction. We explore, furthermore, how materials and process parameters, such as temperature, density and size/shape distribution of the nanoparticles, influence microstructure evolution.

Topics: Heterogeneous nucleation

Heterogeneous nucleation of/on nanoparticles: a density functional study using the phase-field crystal model

László Gránásy1,2, Frigyes Podmaniczky1, Gyula Tóth3, György Tegze1, Tamás Pusztai1

1Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
2BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom
3Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, U.K.

Crystallization of supersaturated liquids usually starts by heterogeneous nucleation. Mounting evidence shows that even homogeneous nucleation in simple liquids takes place in two steps; first a dense amorphous precursor forms, and the crystalline phase appears via heterogeneous nucleation in/on the precursor cluster. Herein, we review recent results by a simple dynamical density functional theory, the phase-field crystal model, for (precursor-mediated) homogeneous and heterogeneous nucleation of nanocrystals. It will be shown that the mismatch between the lattice constants of the nucleating crystal and the substrate plays a decisive role in determining the contact angle and nucleation barrier, which were found to be non-monotonic functions of the lattice mismatch. Time dependent studies are essential as investigations based on equilibrium properties often cannot identify the preferred nucleation pathways. Modeling of these phenomena is essential for designing materials on the basis of controlled nucleation and/or nano-patterning.

Topics: Heterogeneous nucleation, Phase field crystal

Heterogeneous Crystal Nucleation: The Effect of Lattice Mismatch

Gyula Tóth1, György Tegze2, Tamás Pusztai2, László Gránásy2,3

1Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, U.K.
2Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
3BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom

A simple dynamical density functional theory is used to investigate freezing of an undercooled liquid in the presence of a crystalline substrate. We find that the adsorption of the crystalline phase on the substrate, the contact angle, and the height of the nucleation barrier are nonmonotonic functions of the lattice constant of the substrate. We show that the free-growth-limited model of particle-induced freezing by Greer et al. [Acta Mater. 48, 2823 (2000)] is valid for larger nanoparticles and a small anisotropy of the interface free energy. Faceting due to the small size of the foreign particle or a high anisotropy decouples free growth from the critical size of homogeneous nuclei.

Topics: Heterogeneous nucleation, Phase field crystal

Phase field approach to heterogeneous nucleation in alloys

James A. Warren1, Tamás Pusztai2, László Környei3, László Gránásy2,4

1Metallurgy Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
2Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
3Department of Mathematics and Computational Sciences, Széchenyi István University, Győr 9026, Hungary
4BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom

We extend the phase field model of heterogeneous crystal nucleation developed recently [L. Gránásy et al., Phys. Rev. Lett. 98, 035703 (2007)] to binary alloys. Three approaches are considered to incorporate foreign walls of tunable wetting properties into phase field simulations: a continuum realization of the classical spherical cap model (called model A herein), a nonclassical approach (model B) that leads to ordering of the liquid at the wall and to the appearance of a surface spinodal, and a nonclassical model (model C) that allows for the appearance of local states at the wall that are accessible in the bulk phases only via thermal fluctuations. We illustrate the potential of the presented phase field methods for describing complex polycrystalline solidification morphologies including the shish-kebab structure, columnar to equiaxed transition, and front-particle interaction in binary alloys.

Topics: Heterogeneous nucleation